Suppr超能文献

通过1T'-MoTe/硅波导实现的高效无包层热光调制器

High-Efficiency Cladding-Free Thermo-Optic Modulators via 1T'-MoTe/Silicon Waveguides.

作者信息

Tang Zilan, Wang Hui, Wang Honglin, He Chenglin, Liu Liang, Wang Chunhua, Zhai Jixin, Chen Shula, Gan Ziyang, Xiang Li, Wang Xiaoxia, Pan Anlian

机构信息

Hunan Institute of Optoelectronic Integration and Key Laboratory for MicroNano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China.

School of Physics and Electronics, Hunan Normal University, Changsha 410081, P. R. China.

出版信息

ACS Nano. 2025 Aug 5;19(30):27794-27803. doi: 10.1021/acsnano.5c08879. Epub 2025 Jul 23.

Abstract

Silicon-based optical modulators are crucial for advancing silicon photonics, particularly in optical communication and sensing applications. Thermo-optic (TO) modulation is a convenient and effective approach with a large phase modulation depth, which stands out among various techniques. However, conventional TO modulators face inherent trade-offs: metallic heaters require thick SiO isolation layers that limit thermal efficiency, while graphene-based designs incur large optical losses from transfer process-induced interfacial defects and absorption, ultimately restricting scalability in photonic integrated circuits. Herein, we demonstrate a high-efficiency thermo-optic Mach-Zehnder modulator (TO-MZM) based on 1T'-MoTe/silicon hybrid waveguides at a 1550 nm telecommunication wavelength. Through direct in situ fabrication of the hybrid waveguide structures on large-scale 1T'-MoTe films grown on silicon-on-insulator (SOI) substrates, our design eliminates the requirement for thick silicon dioxide cladding in conventional metal-heater architectures while simultaneously improving thermal transfer efficiency and maintaining CMOS process compatibility. The device achieves a heating efficiency of 82.73 K·μm/mW and an optimized phase-tuning efficiency of 0.396 π·mW with low optical loss, surpassing the performance metrics of previously reported electrically controlled TO-MZMs. Furthermore, the device achieves 30° beam steering in a 16-channel optical phased array, highlighting its potential for wide field view and low-power applications in LiDAR systems. Our results offer a scalable, energy-efficient solution for next-generation optical modulators in advanced optoelectronic systems.

摘要

硅基光调制器对于推动硅光子学发展至关重要,特别是在光通信和传感应用中。热光(TO)调制是一种便捷有效的方法,具有较大的相位调制深度,在各种技术中脱颖而出。然而,传统的TO调制器面临着固有的权衡:金属加热器需要厚的SiO隔离层,这限制了热效率,而基于石墨烯的设计由于转移过程引起的界面缺陷和吸收会产生较大的光损耗,最终限制了光子集成电路的可扩展性。在此,我们展示了一种基于1T'-MoTe/硅混合波导的高效热光马赫-曾德尔调制器(TO-MZM),其工作在1550 nm电信波长。通过在绝缘体上硅(SOI)衬底上生长的大规模1T'-MoTe薄膜上直接原位制备混合波导结构,我们的设计消除了传统金属加热器架构中对厚二氧化硅包层的需求,同时提高了热传递效率并保持了CMOS工艺兼容性。该器件实现了82.73 K·μm/mW的加热效率和0.396 π·mW的优化相位调谐效率,且光损耗低,超过了先前报道的电控TO-MZM的性能指标。此外,该器件在16通道光学相控阵中实现了30°的光束转向,突出了其在激光雷达系统中用于宽视场和低功耗应用的潜力。我们的结果为先进光电子系统中的下一代光调制器提供了一种可扩展、节能的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验