Suppr超能文献

3D打印支架促进用于脊髓损伤的增强型脊髓类器官形成。

3D-Printed Scaffolds Promote Enhanced Spinal Organoid Formation for Use in Spinal Cord Injury.

作者信息

Han Guebum, Lavoie Nicolas S, Patil Nandadevi, Korenfeld Olivia G, Kim Hyunjun, Esguerra Manuel, Joung Daeha, McAlpine Michael C, Parr Ann M

机构信息

Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.

Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.

出版信息

Adv Healthc Mater. 2025 Sep;14(24):e04817. doi: 10.1002/adhm.202404817. Epub 2025 Jul 23.

Abstract

The transplantation of regionally specific spinal neural progenitor cells (sNPCs) has shown promise for functional restoration after spinal cord injury (SCI) by forming connections with host neural circuits. Here, 3D-printed organoid scaffolds for transplantation using clinically relevant human induced pluripotent stem cell-derived regionally specific sNPCs is developed. Scaffolds with microscale channels are printed, and sNPCs are subsequently printed within these channels. The scaffolds direct axonal projections along the channels and guide the cells to simulate in vivo-like conditions, leading to more effective cell maturation and the development of neuronal networks crucial for restoring function after SCI. The scaffolds, with organoids assembled along their lengths, are transplanted into the transected spinal cords of rats. This significantly promotes the functional recovery of the rats. At 12 weeks post-transplantation, the majority of the cells in the scaffolds differentiate into neurons and integrate into the host spinal cord tissue. These results demonstrate their potential to create a relay system along the spinal cord and form synapses in both the rostral and caudal directions relative to the scaffold. It is envisioned that combining sNPCs, organoid assembly, and 3D printing strategies can ultimately lead to a transformative treatment approach for SCI.

摘要

通过与宿主神经回路建立连接,区域特异性脊髓神经祖细胞(sNPCs)移植已显示出在脊髓损伤(SCI)后实现功能恢复的潜力。在此,利用临床相关的人类诱导多能干细胞衍生的区域特异性sNPCs开发了用于移植的3D打印类器官支架。打印出具有微尺度通道的支架,随后将sNPCs打印在这些通道内。这些支架引导轴突沿着通道投射,并引导细胞模拟体内样条件,从而实现更有效的细胞成熟以及对SCI后恢复功能至关重要的神经网络发育。将沿其长度组装有类器官的支架移植到大鼠横断的脊髓中。这显著促进了大鼠的功能恢复。移植后12周,支架中的大多数细胞分化为神经元并整合到宿主脊髓组织中。这些结果证明了它们在脊髓沿线创建中继系统并在相对于支架的头端和尾端方向形成突触的潜力。可以设想,将sNPCs、类器官组装和3D打印策略相结合最终可能会产生一种变革性的SCI治疗方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验