Shanmugha Soundare S, Ariponnammal S, Arivanandhan M, Jayavel R
Centre for Nanoscience and Technology, Anna University Chennai 600025 Tamilnadu India
Department of Physics, Gandhigram Rural Institute, Deemed to Be University Gandhigram 624302 Dindigul District Tamilnadu India
RSC Adv. 2025 Jul 23;15(32):26253-26265. doi: 10.1039/d5ra03410h. eCollection 2025 Jul 21.
Ytterbium selenite (YbSeO) was successfully synthesized using a simple coprecipitation technique, resulting in bamboo-like nanorods approximately 110 nm in size. The compound crystallizes in a monoclinic structure and exhibits promising features for optoelectronic applications and UV filtering. Spectroscopic analysis reveals native point defects as well as Schottky and Frankel surface defects, which facilitate radiative electron-hole recombination making it a potential material for display technologies. Ytterbium is embedded within an oxide matrix in the sample, and a distinct magnetic phase transition occurs between 20 K and 30 K under an applied magnetic field. At room temperature 300 K, the M-H curve indicates weak ferromagnetic behaviour. Electrochemical evaluation of YbSeO based electrodes in both symmetric and asymmetric supercapacitor configurations revealed impressive performance. The symmetric device exhibited a specific capacitance of 142.51 F g, an energy density of 11.98 W h kg, and a power density of 550 W kg at 1 A g, with 78.09% capacitance retention after 10 000 cycles. Remarkably, the asymmetric supercapacitor achieved a higher specific capacitance of 169.86 F g, an energy density of 60.39 W h kg, and a power density of 800 W kg within a 1.60 V potential window, retaining 85% of its capacitance after 10 000 cycles. Impedance spectroscopy confirmed the material's double-layer capacitive behaviour. Overall, the asymmetric configuration demonstrated superior performance, making YbSeO a promising candidate for energy storage and conversion technologies.
采用简单的共沉淀技术成功合成了亚硒酸镱(YbSeO),得到了尺寸约为110纳米的竹状纳米棒。该化合物结晶为单斜结构,在光电子应用和紫外线过滤方面表现出良好的特性。光谱分析揭示了本征点缺陷以及肖特基和弗伦克尔表面缺陷,这些缺陷促进了辐射性电子 - 空穴复合,使其成为显示技术的潜在材料。镱嵌入在样品的氧化物基质中,在施加磁场的情况下,在20 K至30 K之间会发生明显的磁相变。在室温300 K下,M - H曲线表明存在弱铁磁行为。对基于YbSeO的电极在对称和不对称超级电容器配置中的电化学评估显示出令人印象深刻的性能。对称器件在1 A g时的比电容为142.51 F g,能量密度为11.98 W h kg,功率密度为550 W kg,在10000次循环后电容保持率为78.09%。值得注意的是,不对称超级电容器在1.60 V的电势窗口内实现了更高的比电容169.86 F g,能量密度为60.39 W h kg,功率密度为800 W kg,在10000次循环后保持其电容的85%。阻抗谱证实了该材料的双层电容行为。总体而言,不对称配置表现出卓越的性能,使YbSeO成为储能和能量转换技术的有前途的候选材料。