Sepúlveda Pamela, Suazo-Hernández Jonathan, Cáceres-Jensen Lizethly, de la Luz Mora María, Denardin Juliano, García-García Alejandra, Cornejo Pablo, Sarkar Binoy
Centro de Nanotecnología Aplicada (CNAP), Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor Camino la Pirámide 5750 Huechuraba 8580745 Santiago Chile.
Escuela de Ingeniería en Medio Ambiente y Sustentabilidad, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor Camino la Pirámide 5750 Huechuraba 8580745 Santiago Chile.
RSC Adv. 2025 Jul 23;15(32):26321-26337. doi: 10.1039/d5ra02256h. eCollection 2025 Jul 21.
Excessive phosphorus (P) in surface and ground water can cause serious environmental issues. This study aims to synthesize and characterize novel iron oxides (Fe O ) nanoparticles (NPs) with and without Ni and Ni-Pd doping and unravel the NPs' performance and mechanism for P removal from water. X-ray diffraction, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy results confirmed successful doping of Ni and Ni-Pd on Fe O NPs. Fe O -Ni NPs exhibited a higher specific surface area and isoelectric point than Fe O and Fe O -Ni-Pd NPs. The kinetic data for P adsorption on Fe O NPs fitted to the pseudo-first order model and Fe O -Ni and Fe O -Ni-Pd NPs fitted to the pseudo-second order model. Adsorption isotherm data for Fe O NPs fitted to the Freundlich model and Fe O -Ni and Fe O -Ni-Pd NPs fitted to the Langmuir model. The maximum P adsorption capacity was the highest for Fe O -Ni (35.66 mg g) followed by Fe O -Ni-Pd (30.73 mg g) and Fe O NPs (21.97 mg g), which was opposite to the P desorption order of these adsorbents. The adsorption and characterization analysis suggested that inner-sphere complexes and co-precipitation were the key mechanisms for P adsorption on Fe O -Ni and Fe O -Ni-Pd NPs. Therefore, Fe O -Ni NPs were a highly effective adsorbent for removing P from water.
地表水和地下水中过量的磷(P)会引发严重的环境问题。本研究旨在合成并表征含镍和镍 - 钯掺杂与未掺杂的新型氧化铁(Fe₂O₃)纳米颗粒(NPs),并揭示这些纳米颗粒从水中去除磷的性能及机制。X射线衍射、能量色散X射线光谱和X射线光电子能谱结果证实了镍和镍 - 钯在Fe₂O₃纳米颗粒上的成功掺杂。Fe₂O₃ - Ni纳米颗粒比Fe₂O₃和Fe₂O₃ - Ni - Pd纳米颗粒表现出更高的比表面积和等电点。磷在Fe₂O₃纳米颗粒上的吸附动力学数据符合准一级模型,而Fe₂O₃ - Ni和Fe₂O₃ - Ni - Pd纳米颗粒符合准二级模型。Fe₂O₃纳米颗粒的吸附等温线数据符合Freundlich模型,Fe₂O₃ - Ni和Fe₂O₃ - Ni - Pd纳米颗粒符合Langmuir模型。最大磷吸附容量以Fe₂O₃ - Ni最高(35.66 mg/g),其次是Fe₂O₃ - Ni - Pd(30.73 mg/g)和Fe₂O₃纳米颗粒(21.97 mg/g),这与这些吸附剂的磷解吸顺序相反。吸附和表征分析表明,内层络合物和共沉淀是磷在Fe₂O₃ - Ni和Fe₂O₃ - Ni - Pd纳米颗粒上吸附的关键机制。因此,Fe₂O₃ - Ni纳米颗粒是从水中去除磷的高效吸附剂。