Saeed Humaira, Padmesh Sudhaker, Singh Aditi, Singh Sujeet Pratap, Siddiqui Mohammed Haris, Sen Manodeep, Hussain Imran, Beg Mirza Masroor Ali
Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India.
Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India.
Front Microbiol. 2025 Jul 9;16:1550594. doi: 10.3389/fmicb.2025.1550594. eCollection 2025.
Drug-resistant poses a significant healthcare burden, driving the search for novel antimicrobials. We have previously done the isolation and whole-genome sequencing of ASEC2201, a novel coliphage derived from multidrug-resistant clinical strains. Here, we report the identification and characterization of phage enzyme, holin by in silico approaches. Genome annotation using Prokka identified three putative holin genes (PROKKA_03659, PROKKA_04292, and PROKKA_04422) belonging to the Phage_holin_2_1 superfamily. Upstream promoter prediction revealed active regulatory elements at positions 112, 177, and 186 for these genes, indicating robust transcriptional activity. Transmembrane topology analysis using DeepTMHMM confirmed the presence of two to three -helical membrane-spanning domains in each holin, essential for pore formation. Homology modeling with SWISS-MODEL yielded high-confidence three-dimensional structures characterized by conserved membrane-anchoring motifs, as supported by QMEAN and GMQE quality scores. identification of cell-penetrating peptide motifs within the holin sequences suggests potential for enhanced intracellular delivery in CPP-fusion therapeutic constructs. Overall, our in-depth analysis elucidates the structural and functional properties of ASEC2201 holins, underscoring their biotechnological significance as scaffolds for developing novel antimicrobial strategies against MDR . It gives us an understanding on how the holins, with their inherent membrane-disrupting functions, can be explored in detail for future use as lysis modules in programmable bacterial systems, while their identified CPP motifs offer additional potential for engineering targeted therapeutic delivery vehicles. This study also demonstrates the potential of integrative approaches in developing a comprehensive foundation for future experimental validation for proteins with no prior functional annotation.
耐药性带来了巨大的医疗负担,促使人们寻找新型抗菌药物。我们之前对源自多重耐药临床菌株的新型大肠杆菌噬菌体ASEC2201进行了分离和全基因组测序。在此,我们报告通过计算机方法对噬菌体酶——穿孔素的鉴定和表征。使用Prokka进行的基因组注释确定了三个推定的穿孔素基因(PROKKA_03659、PROKKA_04292和PROKKA_04422),它们属于噬菌体穿孔素_2_1超家族。上游启动子预测揭示了这些基因在第112、177和186位的活性调控元件,表明其具有强大的转录活性。使用DeepTMHMM进行的跨膜拓扑分析证实每个穿孔素中存在两到三个螺旋跨膜结构域,这对于孔形成至关重要。用SWISS-MODEL进行的同源建模产生了具有保守膜锚定基序的高可信度三维结构,QMEAN和GMQE质量得分也支持这一点。在穿孔素序列中鉴定出细胞穿透肽基序表明在CPP融合治疗构建体中增强细胞内递送的潜力。总体而言,我们的深入分析阐明了ASEC2201穿孔素的结构和功能特性,强调了它们作为开发针对多重耐药性的新型抗菌策略支架的生物技术意义。它让我们了解了如何详细探索具有固有膜破坏功能的穿孔素,以便将来在可编程细菌系统中用作裂解模块,同时它们已鉴定的CPP基序为工程化靶向治疗递送载体提供了额外的潜力。这项研究还展示了综合方法在为未来对无先前功能注释的蛋白质进行实验验证建立全面基础方面的潜力。