Suppr超能文献

分割、征服和重构:如何解决曼氏血吸虫 Micro-Exon Gene (MEG) 蛋白的三维结构难题。

Divide, conquer and reconstruct: How to solve the 3D structure of recalcitrant Micro-Exon Gene (MEG) protein from Schistosoma mansoni.

机构信息

Université de Lyon, CNRS, UCB Lyon1, Institut des Sciences Analytiques, UMR5280, 5 rue de la Doua, Villeurbanne, France.

Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic.

出版信息

PLoS One. 2023 Aug 3;18(8):e0289444. doi: 10.1371/journal.pone.0289444. eCollection 2023.

Abstract

Micro-Exon Genes are a widespread class of genes known for their high variability, widespread in the genome of parasitic trematodes such as Schistosoma mansoni. In this study, we present a strategy that allowed us to solve the structures of three alternatively spliced isoforms from the Schistoma mansoni MEG 2.1 family for the first time. All isoforms are hydrophobic, intrinsically disordered, and recalcitrant to be expressed in high yield in heterologous hosts. We resorted to the chemical synthesis of shorter pieces, before reconstructing the entire sequence. Here, we show that isoform 1 partially folds in a-helix in the presence of trifluoroethanol while isoform 2 features two rigid elbows, that maintain the peptide as disordered, preventing any structuring. Finally, isoform 3 is dominated by the signal peptide, which folds into a-helix. We demonstrated that combining biophysical techniques, like circular dichroism and nuclear magnetic resonance at natural abundance, with in silico molecular dynamics simulation for isoform 1 only, was the key to solve the structure of MEG 2.1. Our results provide a crucial piece to the puzzle of this elusive and highly variable class of proteins.

摘要

微外显子基因是一类高度变异的基因,广泛存在于寄生扁形动物(如曼氏血吸虫)的基因组中。在这项研究中,我们提出了一种策略,首次成功解决了曼氏血吸虫 MEG 2.1 家族三个可变剪接异构体的结构问题。所有异构体都是疏水性的、无序的,并且在异源宿主中难以高产量表达。我们先通过化学合成较短的片段,然后再重新构建整个序列。在这里,我们发现,在三氟乙醇存在的情况下,异构体 1 部分折叠成α-螺旋,而异构体 2 具有两个刚性的弯曲,使肽保持无序状态,防止任何结构形成。最后,异构体 3主要由信号肽组成,它折叠成α-螺旋。我们证明,将圆二色性和核磁共振等生物物理技术与仅针对异构体 1 的计算分子动力学模拟相结合,是解决 MEG 2.1 结构的关键。我们的结果为这个难以捉摸且高度变异的蛋白质家族提供了关键的一环。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3101/10399815/0f53e4539d75/pone.0289444.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验