Yu Qili, Song Tingting, Cui Rui, Liu Li
Department of Cardiology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China.
Front Med (Lausanne). 2025 Jul 9;12:1555596. doi: 10.3389/fmed.2025.1555596. eCollection 2025.
This study focuses on the clinical issue of acute myocardial infarction (AMI) in the context of acute heart failure (AHF), particularly among the elderly population. Elderly patients with AHF experiencing AMI represent a severe cardiac condition with poor prognosis. Hence, this research aims to analyze potential risk factors and establish a clinical prediction model using logistic regression to facilitate early assessment and guide clinical decisions.
A retrospective analysis design was employed, selecting elderly AHF patients hospitalized in the Cardiovascular Department of Qinhuangdao City First Hospital from October 2019 to December 2023. Patient history and clinical data were analyzed using LASSO regression and logistic regression to identify and analyze predictors of AMI, leading to the construction of a nomogram. The model's predictive performance was evaluated using the concordance index, receiver operating characteristic curve, decision curve analysis, and clinical impact curves to gain insights into the nomogram's accuracy and clinical utility.
The study included 1,904 patients. Logistic regression analysis identified age, coronary heart disease, diabetes, pulmonary infection, ventricular arrhythmia, hyperlipidemia, hypoalbuminemia, left ventricular diastolic diameter (LVDD), and left ventricular ejection fraction (LVEF) as independent risk factors for AMI during hospitalization. The predictive model was formulated as follows: Logit(P) = -7.286 + 0.065 × Age + 0.380 × Coronary heart disease + 0.358 × Diabetes + 0.511 × Pulmonary infection + 0.849 × Ventricular arrhythmia + 0.665 × Hyperlipidemia + 0.514 × Hypoalbuminemia + 0.055 × LVDD - 0.131 × LVEF. The model demonstrated an AUC of 0.780 (0.741-0.819), with an accuracy of 91.3%, and a specificity of 91.4%, indicating good predictive performance. Further validation through decision curve analysis and clinical impact curves confirmed the model's effectiveness in clinical decision support.
The study successfully developed a multivariate analysis-based prediction model capable of effectively predicting the risk of AMI in hospitalized elderly AHF patients. This model provides a powerful tool for clinicians, facilitating early identification and intervention in high-risk patients.
本研究聚焦于急性心力衰竭(AHF)背景下的急性心肌梗死(AMI)这一临床问题,尤其是在老年人群体中。患有AHF的老年患者发生AMI是一种预后较差的严重心脏疾病。因此,本研究旨在分析潜在风险因素,并使用逻辑回归建立临床预测模型,以促进早期评估并指导临床决策。
采用回顾性分析设计,选取2019年10月至2023年12月在秦皇岛市第一医院心血管内科住院的老年AHF患者。使用LASSO回归和逻辑回归分析患者病史及临床数据,以识别和分析AMI的预测因素,进而构建列线图。使用一致性指数、受试者工作特征曲线、决策曲线分析和临床影响曲线评估模型的预测性能,以深入了解列线图的准确性和临床实用性。
该研究纳入了1904例患者。逻辑回归分析确定年龄、冠心病、糖尿病、肺部感染、室性心律失常、高脂血症、低蛋白血症、左心室舒张直径(LVDD)和左心室射血分数(LVEF)为住院期间AMI的独立危险因素。预测模型公式如下:Logit(P) = -7.286 + 0.065×年龄 + 0.380×冠心病 + 0.358×糖尿病 + 0.511×肺部感染 + 0.849×室性心律失常 + 0.665×高脂血症 + 0.514×低蛋白血症 + 0.055×LVDD - 0.131×LVEF。该模型的AUC为0.780(0.741 - 0.819),准确率为91.3%,特异性为91.4%,表明具有良好的预测性能。通过决策曲线分析和临床影响曲线进一步验证,证实了该模型在临床决策支持方面的有效性。
该研究成功开发了一种基于多因素分析的预测模型,能够有效预测住院老年AHF患者发生AMI的风险。该模型为临床医生提供了一个强大的工具,有助于早期识别高危患者并进行干预。