Zhang Jinquan, Zhu Xuejiao, Chen Xiaona, Liu Haichao, Yan Zhengzheng, Chen Zhixia, Li Quan, Yu Weifeng
Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, People's Republic of China.
J Inflamm Res. 2025 Jul 18;18:9413-9441. doi: 10.2147/JIR.S527378. eCollection 2025.
AIM: This study investigates the therapeutic mechanisms of (DH-HQ) herb pair against acute lung injury (ALI) using integrative network pharmacology and multi-omics approaches. METHODS: We combined bioactive compound screening of DH-HQ with ALI-related transcriptomics to construct dual interaction networks (herb-compound-target and protein-protein interactions). Core pathways were identified via bioinformatic analyses (GO/KEGG/GSEA) and validated through Mendelian randomization (to confirm gene causality), single-cell RNA sequencing (cell-type specificity), molecular docking (binding stability assessment), and in vivo ALI models (pathological/clinical validation). RESULTS: Our analysis identified 207 active DH-HQ components and 93 therapeutic targets associated with ALI. PPI network analysis revealed five key regulatory targets: , and . Functional enrichment analyses demonstrated DH-HQ's modulation of critical pathways including HIF-1 signaling and cytokine-cytokine receptor interaction. Molecular docking revealed strong compound-target binding affinities (energies: -8.8 to -7.3 kcal/mol), with emodin and baicalin showing the highest stability. In vivo, DH-HQ co-treatment significantly attenuated LPS-induced ALI, evidenced by reduced clinical scores and body weight recovery (p<0.05). Multi-modal validation prioritized as diagnostic hubs (AUC >0.70). CONCLUSION: This study elucidates DH-HQ's multi-target mechanism in mitigating ALI via synergistic bioactive components (emodin and baicalin) and key pathway modulation. Preclinical evidence confirms efficacy through diagnostic hub genes and compound interactions, yet clinical application demands pharmacodynamic refinement.
目的:本研究采用整合网络药理学和多组学方法,探讨(大黄-黄芩)药对治疗急性肺损伤(ALI)的作用机制。 方法:我们将大黄-黄芩的生物活性化合物筛选与ALI相关的转录组学相结合,构建双重相互作用网络(草药-化合物-靶点和蛋白质-蛋白质相互作用)。通过生物信息学分析(基因本体论/京都基因与基因组百科全书/基因集富集分析)确定核心通路,并通过孟德尔随机化(以确认基因因果关系)、单细胞RNA测序(细胞类型特异性)、分子对接(结合稳定性评估)和体内ALI模型(病理/临床验证)进行验证。 结果:我们的分析确定了207种大黄-黄芩活性成分和93个与ALI相关的治疗靶点。蛋白质-蛋白质相互作用网络分析揭示了五个关键调控靶点: 、 和 。功能富集分析表明,大黄-黄芩可调节包括缺氧诱导因子-1信号通路和细胞因子-细胞因子受体相互作用在内的关键通路。分子对接显示化合物与靶点具有较强的结合亲和力(能量:-8.8至-7.3千卡/摩尔),其中大黄素和黄芩苷的稳定性最高。在体内,大黄-黄芩联合治疗显著减轻了脂多糖诱导造成的ALI,临床评分降低和体重恢复证明了这一点(p<0.05)。多模式验证将 确定为诊断枢纽(曲线下面积>0.70)。 结论:本研究阐明了大黄-黄芩通过协同生物活性成分(大黄素和黄芩苷)和关键通路调节减轻ALI的多靶点机制。临床前证据通过诊断枢纽基因和化合物相互作用证实了其疗效,但临床应用需要对药效学进行优化。
Pharmaceuticals (Basel). 2024-12-15