文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多靶点协同对抗急性肺损伤:系统药理学解析大黄-黄芩药对的治疗机制

Multi-Target Synergy Against Acute Lung Injury: Systems Pharmacology Decoding Dahuang-Huangqin Herb Pair's Therapeutic Mechanism.

作者信息

Zhang Jinquan, Zhu Xuejiao, Chen Xiaona, Liu Haichao, Yan Zhengzheng, Chen Zhixia, Li Quan, Yu Weifeng

机构信息

Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.

Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, People's Republic of China.

出版信息

J Inflamm Res. 2025 Jul 18;18:9413-9441. doi: 10.2147/JIR.S527378. eCollection 2025.


DOI:10.2147/JIR.S527378
PMID:40703642
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12284239/
Abstract

AIM: This study investigates the therapeutic mechanisms of (DH-HQ) herb pair against acute lung injury (ALI) using integrative network pharmacology and multi-omics approaches. METHODS: We combined bioactive compound screening of DH-HQ with ALI-related transcriptomics to construct dual interaction networks (herb-compound-target and protein-protein interactions). Core pathways were identified via bioinformatic analyses (GO/KEGG/GSEA) and validated through Mendelian randomization (to confirm gene causality), single-cell RNA sequencing (cell-type specificity), molecular docking (binding stability assessment), and in vivo ALI models (pathological/clinical validation). RESULTS: Our analysis identified 207 active DH-HQ components and 93 therapeutic targets associated with ALI. PPI network analysis revealed five key regulatory targets: , and . Functional enrichment analyses demonstrated DH-HQ's modulation of critical pathways including HIF-1 signaling and cytokine-cytokine receptor interaction. Molecular docking revealed strong compound-target binding affinities (energies: -8.8 to -7.3 kcal/mol), with emodin and baicalin showing the highest stability. In vivo, DH-HQ co-treatment significantly attenuated LPS-induced ALI, evidenced by reduced clinical scores and body weight recovery (p<0.05). Multi-modal validation prioritized as diagnostic hubs (AUC >0.70). CONCLUSION: This study elucidates DH-HQ's multi-target mechanism in mitigating ALI via synergistic bioactive components (emodin and baicalin) and key pathway modulation. Preclinical evidence confirms efficacy through diagnostic hub genes and compound interactions, yet clinical application demands pharmacodynamic refinement.

摘要

目的:本研究采用整合网络药理学和多组学方法,探讨(大黄-黄芩)药对治疗急性肺损伤(ALI)的作用机制。 方法:我们将大黄-黄芩的生物活性化合物筛选与ALI相关的转录组学相结合,构建双重相互作用网络(草药-化合物-靶点和蛋白质-蛋白质相互作用)。通过生物信息学分析(基因本体论/京都基因与基因组百科全书/基因集富集分析)确定核心通路,并通过孟德尔随机化(以确认基因因果关系)、单细胞RNA测序(细胞类型特异性)、分子对接(结合稳定性评估)和体内ALI模型(病理/临床验证)进行验证。 结果:我们的分析确定了207种大黄-黄芩活性成分和93个与ALI相关的治疗靶点。蛋白质-蛋白质相互作用网络分析揭示了五个关键调控靶点: 、 和 。功能富集分析表明,大黄-黄芩可调节包括缺氧诱导因子-1信号通路和细胞因子-细胞因子受体相互作用在内的关键通路。分子对接显示化合物与靶点具有较强的结合亲和力(能量:-8.8至-7.3千卡/摩尔),其中大黄素和黄芩苷的稳定性最高。在体内,大黄-黄芩联合治疗显著减轻了脂多糖诱导造成的ALI,临床评分降低和体重恢复证明了这一点(p<0.05)。多模式验证将 确定为诊断枢纽(曲线下面积>0.70)。 结论:本研究阐明了大黄-黄芩通过协同生物活性成分(大黄素和黄芩苷)和关键通路调节减轻ALI的多靶点机制。临床前证据通过诊断枢纽基因和化合物相互作用证实了其疗效,但临床应用需要对药效学进行优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/c89785115ad4/JIR-18-9413-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/123f0ba569c2/JIR-18-9413-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/9fa1684bc678/JIR-18-9413-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/40348ec86d4a/JIR-18-9413-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/a3f54b8b1591/JIR-18-9413-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/a70b7582fd32/JIR-18-9413-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/8ea94bff80c2/JIR-18-9413-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/da7782da09f9/JIR-18-9413-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/18d2d90fda66/JIR-18-9413-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/3ed95ce07eed/JIR-18-9413-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/90c732741c3e/JIR-18-9413-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/3d61b1d4329a/JIR-18-9413-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/1d661ca77312/JIR-18-9413-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/bee8d83914c6/JIR-18-9413-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/c89785115ad4/JIR-18-9413-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/123f0ba569c2/JIR-18-9413-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/9fa1684bc678/JIR-18-9413-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/40348ec86d4a/JIR-18-9413-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/a3f54b8b1591/JIR-18-9413-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/a70b7582fd32/JIR-18-9413-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/8ea94bff80c2/JIR-18-9413-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/da7782da09f9/JIR-18-9413-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/18d2d90fda66/JIR-18-9413-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/3ed95ce07eed/JIR-18-9413-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/90c732741c3e/JIR-18-9413-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/3d61b1d4329a/JIR-18-9413-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/1d661ca77312/JIR-18-9413-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/bee8d83914c6/JIR-18-9413-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c93/12284239/c89785115ad4/JIR-18-9413-g0014.jpg

相似文献

[1]
Multi-Target Synergy Against Acute Lung Injury: Systems Pharmacology Decoding Dahuang-Huangqin Herb Pair's Therapeutic Mechanism.

J Inflamm Res. 2025-7-18

[2]
Investigation of the effect and mechanism of Fei Re Pu Qing powder in treating acute lung injury (ALI) by modulating macrophage polarization via serum pharmacology and network pharmacology.

J Ethnopharmacol. 2025-7-24

[3]
Solidago decurrens Lour. Controls LPS-Induced Acute Lung Injury by Reducing Inflammatory Responses and Modulating the TLR4/NF-κB/NLRP3 Signaling Pathway.

J Ethnopharmacol. 2025-6-17

[4]
Elucidating the Mechanism of Xiaoqinglong Decoction in Chronic Urticaria Treatment: An Integrated Approach of Network Pharmacology, Bioinformatics Analysis, Molecular Docking, and Molecular Dynamics Simulations.

Curr Comput Aided Drug Des. 2025-7-16

[5]
The HIF-1α signaling pathway: A key approach to revealing the effects of Scutellaria baicalensis Georgi against lipopolysaccharide-induced spontaneous abortion.

Phytomedicine. 2025-6-19

[6]
The potential mechanism of Huangqin for treatment of systemic lupus erythematosus based on network pharmacology, molecular docking and molecular dynamics simulation.

PeerJ. 2025-6-26

[7]
Elucidating the Role of Gardeniae Fructus and Scutellariae Radix Herb Pair in Alzheimer's Disease via Network Pharmacology: Emphasis on Oxidative Stress, and the PI3K/Akt Pathway.

Curr Pharm Biotechnol. 2025-6-24

[8]
Integrating Network Pharmacology and in vivo Validation to Explore the Mechanisms of Buyang Huanwu Decoction in Myocardial Ischemia-Reperfusion Injury.

J Inflamm Res. 2025-6-10

[9]
Integrated network pharmacology and experimental validation reveal EGFR/p53/Bcl-2-mediated anti-hepatocellular carcinoma effects of Zedoary Turmeric Oil.

J Ethnopharmacol. 2025-7-3

[10]
Mechanism of action of Pulsatilla chinensis (Bunge) Regel compounds in hepatocellular carcinoma (HCC) treatment: An integrated analysis combining network pharmacology, molecular docking, molecular dynamics simulations and luciferase reporter gene assay.

J Ethnopharmacol. 2025-6-19

本文引用的文献

[1]
IL-22 Alleviates Sepsis-Induced Acute Lung Injury by Inhibiting Epithelial Cell Apoptosis Associated with STAT3 Signalling.

J Inflamm Res. 2025-4-21

[2]
Causal Correlations Between Plasma Metabolites, Inflammatory Proteins, and Chronic Obstructive Pulmonary Disease: A Mendelian Randomization and Bioinformatics-Based Investigation.

J Inflamm Res. 2025-3-18

[3]
Supplementary Hesperidin Alleviated CPT-11-Induced Diarrhea by Modulating Gut Microbiota and Inhibiting the IL-17 Signaling Pathway.

J Agric Food Chem. 2025-3-12

[4]
Nerelimomab Alleviates Capsaicin-Induced Acute Lung Injury by Inhibiting TNF Signaling and Apoptosis.

Pharmaceuticals (Basel). 2024-12-15

[5]
Mechanisms of action of for prostate cancer treatment: network pharmacology, molecular docking and experimental validation.

Front Pharmacol. 2024-9-10

[6]
Mechanism Investigation and Clinical Retrospective Evaluation of Qingyi Granules: Pancreas Cleaner About Ameliorating Severe Acute Pancreatitis with Acute Respiratory Distress Syndrome.

Drug Des Devel Ther. 2024

[7]
T cell dysfunction in elderly ARDS patients based on miRNA and mRNA integration analysis.

Front Immunol. 2024

[8]
Emodin Ameliorates Severe Acute Pancreatitis-Associated Acute Lung Injury in Rats by Modulating Exosome-Specific miRNA Expression Profiles.

Int J Nanomedicine. 2023

[9]
Biomarkers, signaling pathways, and programmed cell death in acute lung injury and its treatment with Traditional Chinese Medicine: a narrative review.

Eur Rev Med Pharmacol Sci. 2023-11

[10]
BATMAN-TCM 2.0: an enhanced integrative database for known and predicted interactions between traditional Chinese medicine ingredients and target proteins.

Nucleic Acids Res. 2024-1-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索