Suppr超能文献

一种使用深度学习和对比度转换的精确儿童骨龄预测模型。

An accurate pediatric bone age prediction model using deep learning and contrast conversion.

作者信息

Choi Dong Hyeok, Ahn So Hyun, Lee Rena

机构信息

Department of Medicine, Yonsei University College of Medicine, Seoul, Korea.

Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, Korea.

出版信息

Ewha Med J. 2024 Apr;47(2):e23. doi: 10.12771/emj.2024.e23. Epub 2024 Apr 30.

Abstract

OBJECTIVES

This study aimed to develop an accurate pediatric bone age prediction model by utilizing deep learning models and contrast conversion techniques, in order to improve growth assessment and clinical decision-making in clinical practice.

METHODS

The study employed a variety of deep learning models and contrast conversion techniques to predict bone age. The training dataset consisted of pediatric left-hand X-ray images, each annotated with bone age and sex information. Deep learning models, including a convolutional neural network , Residual Network 50 , Visual Geometry Group 19, Inception V3, and Xception were trained and assessed using the mean absolute error (MAE). For the test data, contrast conversion techniques including fuzzy contrast enhancement, contrast limited adaptive histogram equalization (HE) , and HE were implemented. The quality of the images was evaluated using peak signal-to-noise ratio (SNR), mean squared error, SNR, coefficient of variation, and contrast-to-noise ratio metrics. The bone age prediction results using the test data were evaluated based on the MAE and root mean square error, and the t-test was performed.

RESULTS

The Xception model showed the best performance (MAE=41.12). HE exhibited superior image quality, with higher SNR and coefficient of variation values than other methods. Additionally, HE demonstrated the highest contrast among the techniques assessed, with a contrast-to-noise ratio value of 1.29. Improvements in bone age prediction resulted in a decline in MAE from 2.11 to 0.24, along with a decrease in root mean square error from 0.21 to 0.02.

CONCLUSION

This study demonstrates that preprocessing the data before model training does not significantly affect the performance of bone age prediction when comparing contrast-converted images with original images.

摘要

目的

本研究旨在利用深度学习模型和对比度转换技术开发一种准确的儿童骨龄预测模型,以改善临床实践中的生长评估和临床决策。

方法

该研究采用了多种深度学习模型和对比度转换技术来预测骨龄。训练数据集由儿童左手X线图像组成,每张图像都标注了骨龄和性别信息。使用平均绝对误差(MAE)对包括卷积神经网络、残差网络50、视觉几何组19、Inception V3和Xception在内的深度学习模型进行训练和评估。对于测试数据,实施了包括模糊对比度增强、对比度受限自适应直方图均衡化(HE)和HE在内的对比度转换技术。使用峰值信噪比(SNR)、均方误差、SNR、变异系数和对比度噪声比指标评估图像质量。基于MAE和均方根误差评估使用测试数据的骨龄预测结果,并进行t检验。

结果

Xception模型表现最佳(MAE = 41.12)。HE展现出卓越的图像质量,其SNR和变异系数值高于其他方法。此外,在评估的技术中,HE的对比度最高,对比度噪声比值为1.29。骨龄预测的改进使MAE从2.11降至0.24,同时均方根误差从0.21降至0.02。

结论

本研究表明,在将对比度转换后的图像与原始图像进行比较时,模型训练前的数据预处理对骨龄预测性能没有显著影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a15/12093661/55d56472d8cb/emj-47-2-23-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验