Bhandarkawthekar Varad, Navamani T M, Sharma Rishabh, Shyamala K
School of Computer Science and Engineering (SCOPE), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
Front Big Data. 2025 Jul 9;8:1569147. doi: 10.3389/fdata.2025.1569147. eCollection 2025.
The widespread emergence of deepfake videos presents substantial challenges to the security and authenticity of digital content, necessitating robust detection methods. Deepfake detection remains challenging due to the increasing sophistication of forgery techniques. While existing methods often focus on spatial features, they may overlook crucial temporal information distinguishing real from fake content and need to investigate several other Convolutional Neural Network architectures on video-based deep fake datasets.
This study introduces an RLNet deep learning framework that utilizes ResNet and Long Short Term Memory (LSTM) networks for high-precision deepfake video detection. The key objective is exploiting spatial and temporal features to discern manipulated content accurately. The proposed approach starts with preprocessing a diverse dataset with authentic and deepfake videos. The ResNet component captures intricate spatial anomalies at the frame level, identifying subtle manipulations. Concurrently, the LSTM network analyzes temporal inconsistencies across video sequences, detecting dynamic irregularities that signify deepfake content.
Experimental results demonstrate the effectiveness of the combined ResNet and LSTM approach, showing an accuracy of 95.2% and superior detection capabilities compared to existing methods like EfficientNet and Recurrent Neural Networks (RNN). The framework's ability to handle various deepfake techniques and compression levels highlights its versatility and robustness. This research significantly contributes to digital media forensics by providing an advanced tool for detecting deepfake videos, enhancing digital content's security and integrity. The efficacy and resilience of the proposed system are evidenced by deepfake detection, while our visualization-based interpretability provides insights into our model.
深度伪造视频的广泛出现给数字内容的安全性和真实性带来了重大挑战,因此需要强大的检测方法。由于伪造技术日益复杂,深度伪造检测仍然具有挑战性。虽然现有方法通常侧重于空间特征,但它们可能会忽略区分真实内容和伪造内容的关键时间信息,并且需要在基于视频的深度伪造数据集上研究其他几种卷积神经网络架构。
本研究引入了一种RLNet深度学习框架,该框架利用残差网络(ResNet)和长短期记忆(LSTM)网络进行高精度的深度伪造视频检测。关键目标是利用空间和时间特征准确识别被篡改的内容。所提出的方法首先对包含真实视频和深度伪造视频的多样化数据集进行预处理。ResNet组件在帧级别捕获复杂的空间异常,识别细微的篡改。同时,LSTM网络分析视频序列中的时间不一致性,检测表明深度伪造内容的动态不规则性。
实验结果证明了ResNet和LSTM相结合方法的有效性,其准确率达到95.2%,与高效神经网络(EfficientNet)和递归神经网络(RNN)等现有方法相比,具有更强的检测能力。该框架处理各种深度伪造技术和压缩级别的能力突出了其通用性和鲁棒性。本研究通过提供一种用于检测深度伪造视频的先进工具,显著促进了数字媒体取证,增强了数字内容的安全性和完整性。深度伪造检测证明了所提出系统的有效性和适应性,而基于可视化的可解释性为我们的模型提供了见解。