Suppr超能文献

基于误差水平分析和深度学习的深度伪造检测与分类。

Deep fake detection and classification using error-level analysis and deep learning.

机构信息

Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan, 47050.

Department of Electrical Engineering, Chonnam National University, Gwangju, 61186, South Korea.

出版信息

Sci Rep. 2023 May 8;13(1):7422. doi: 10.1038/s41598-023-34629-3.

Abstract

Due to the wide availability of easy-to-access content on social media, along with the advanced tools and inexpensive computing infrastructure, has made it very easy for people to produce deep fakes that can cause to spread disinformation and hoaxes. This rapid advancement can cause panic and chaos as anyone can easily create propaganda using these technologies. Hence, a robust system to differentiate between real and fake content has become crucial in this age of social media. This paper proposes an automated method to classify deep fake images by employing Deep Learning and Machine Learning based methodologies. Traditional Machine Learning (ML) based systems employing handcrafted feature extraction fail to capture more complex patterns that are poorly understood or easily represented using simple features. These systems cannot generalize well to unseen data. Moreover, these systems are sensitive to noise or variations in the data, which can reduce their performance. Hence, these problems can limit their usefulness in real-world applications where the data constantly evolves. The proposed framework initially performs an Error Level Analysis of the image to determine if the image has been modified. This image is then supplied to Convolutional Neural Networks for deep feature extraction. The resultant feature vectors are then classified via Support Vector Machines and K-Nearest Neighbors by performing hyper-parameter optimization. The proposed method achieved the highest accuracy of 89.5% via Residual Network and K-Nearest Neighbor. The results prove the efficiency and robustness of the proposed technique; hence, it can be used to detect deep fake images and reduce the potential threat of slander and propaganda.

摘要

由于社交媒体上易于访问的内容广泛存在,以及先进的工具和廉价的计算基础设施,人们很容易制作出可以传播虚假信息和骗局的深度伪造内容。这种快速发展可能会引起恐慌和混乱,因为任何人都可以轻易地使用这些技术制作宣传。因此,在社交媒体时代,建立一个可靠的系统来区分真实和虚假内容变得至关重要。本文提出了一种通过使用深度学习和机器学习方法来分类深度伪造图像的自动化方法。传统的基于机器学习 (ML) 的系统使用手工特征提取,无法捕捉更复杂的模式,这些模式很难用简单的特征来理解或表示。这些系统不能很好地推广到未见过的数据。此外,这些系统对数据中的噪声或变化很敏感,这会降低它们的性能。因此,这些问题可能会限制它们在现实世界应用中的实用性,因为数据是不断演变的。该框架首先对图像进行错误级别分析,以确定图像是否已被修改。然后将该图像提供给卷积神经网络进行深度特征提取。然后通过执行超参数优化,使用支持向量机和 K-最近邻对生成的特征向量进行分类。该方法通过残差网络和 K-最近邻实现了最高 89.5%的准确率。结果证明了所提出技术的效率和稳健性;因此,它可以用于检测深度伪造图像,降低诽谤和宣传的潜在威胁。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee77/10167215/cd5b3a42c6d8/41598_2023_34629_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验