Qadir Abdul, Mahum Rabbia, El-Meligy Mohammed A, Ragab Adham E, AlSalman Abdulmalik, Awais Muhammad
Computer Science Department, UET, Taxila, Pakistan.
Advanced Manufacturing Institute, King Saud University, Riyadh, 11421, Saudi Arabia.
Heliyon. 2024 Feb 9;10(5):e25757. doi: 10.1016/j.heliyon.2024.e25757. eCollection 2024 Mar 15.
The creation and manipulation of synthetic images have evolved rapidly, causing serious concerns about their effects on society. Although there have been various attempts to identify deep fake videos, these approaches are not universal. Identifying these misleading deepfakes is the first step in preventing them from spreading on social media sites. We introduce a unique deep-learning technique to identify fraudulent clips. Most deepfake identifiers currently focus on identifying face exchange, lip synchronous, expression modification, puppeteers, and other factors. However, exploring a consistent basis for all forms of fake videos and images in real-time forensics is challenging. We propose a hybrid technique that takes input from videos of successive targeted frames, then feeds these frames to the ResNet-Swish-BiLSTM, an optimized convolutional BiLSTM-based residual network for training and classification. This proposed method helps identify artifacts in deepfake images that do not seem real. To assess the robustness of our proposed model, we used the open deepfake detection challenge dataset (DFDC) and Face Forensics deepfake collections (FF++). We achieved 96.23% accuracy when using the FF++ digital record. In contrast, we attained 78.33% accuracy using the aggregated records from FF++ and DFDC. We performed extensive experiments and believe that our proposed method provides more significant results than existing techniques.
合成图像的创建和处理发展迅速,引发了人们对其对社会影响的严重担忧。尽管已经有各种尝试来识别深度伪造视频,但这些方法并不通用。识别这些具有误导性的深度伪造内容是防止它们在社交媒体网站上传播的第一步。我们引入了一种独特的深度学习技术来识别欺诈性片段。目前大多数深度伪造识别器专注于识别面部交换、唇同步、表情修改、操纵者等因素。然而,在实时取证中为所有形式的虚假视频和图像探索一个一致的基础具有挑战性。我们提出了一种混合技术,该技术从连续目标帧的视频中获取输入,然后将这些帧输入到ResNet-Swish-BiLSTM中,这是一个基于卷积BiLSTM的优化残差网络,用于训练和分类。我们提出的方法有助于识别深度伪造图像中看起来不真实的伪像。为了评估我们提出的模型的鲁棒性,我们使用了开放的深度伪造检测挑战数据集(DFDC)和面部取证深度伪造数据集(FF++)。使用FF++数字记录时,我们达到了96.23%的准确率。相比之下,使用FF++和DFDC的汇总记录时,我们达到了78.33%的准确率。我们进行了广泛的实验,并相信我们提出的方法比现有技术提供了更显著的结果。