Viviano-Posadas Alejandro O, Valdes-García Josue, Salomón-Flores María K, Martínez-Otero Diego, Bautista-Renedo Joanatan M, González-Rivas Nelly, Sánchez-Vidal Hilda, German-Acacio Juan M, Valdés-Martínez Jesús, Dorazco-González Alejandro
Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, México, 04510, CDMX, Mexico.
Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, C. P. 50200, Toluca, Estado de México, Mexico.
Dalton Trans. 2025 Aug 12;54(32):12259-12276. doi: 10.1039/d5dt00784d.
Selective recognition and sensing of neurotransmitters in aqueous media using artificial receptors is an attractive but challenging goal in modern supramolecular chemistry. Despite advances in the development of optical receptors for some neurotransmitters, such as dopamine, limited efforts have been invested in developing receptors for epinephrine, a neurotransmitter of paramount importance and a widely used drug for heart attacks. Herein, a new fluorescent molecular receptor (referred to as 1) based on a 1,3-bis-benzimidazole-benzene derivative covalently linked to two phenyl boronic acids was synthesized, structurally characterized single-crystal X-ray diffraction, and studied in-depth as a receptor for four catecholamine-based neurotransmitters as well as several nucleosides, monosaccharides and L-tyrosine in water at physiological pH. Receptor 1 is hydrostable and exhibits fluorescence emission at 408 nm, originated from intraligand (IL) [π-π*] transitions, as supported by TD-DFT calculations. The addition of epinephrine/norepinephrine at micromolar concentrations to an aqueous solution of 1 induces significant and rapid fluorescence changes, whereas in the presence of dopamine, L-DOPA, adenosine, guanosine, glucose, fructose, galactose, ribose and L-Tyr, only modest optical changes are observed. Bis-boronic receptor 1 was found to exhibit high affinity for epinephrine ( = 1.29 × 10 M), with good selectivity over other closely related neurotransmitters, including dopamine and L-DOPA. The affinity of epinephrine for 1 is an order of magnitude greater than that for norepinephrine. Such epinephrine affinity/selectivity for a molecular receptor is still rare. Spectroscopic techniques (fluorescence, B NMR, fluorescence lifetimes), mass spectrometry, single-crystal X-ray diffraction, DFT calculations and atoms in molecules analysis revealed that epinephrine binds to 1 in a 1 : 2 (receptor : analyte) stoichiometry. This two-point recognition involves sp boronate-catechol condensation and multiple hydrogen bonds (OH⋯N and NH⋯N) between the aliphatic chain of epinephrine and the imidazole ring of 1, along with intermolecular interactions between the two epinephrine molecules in the resulting supramolecular structure. The efficient fluorescent response of 1 to epinephrine can be utilized in quantitative sensing of this bioanalyte in real pharmaceutical samples. Furthermore, a chromogenic sensing ensemble comprising 1 and the commercial dye Alizarin Red S was developed, in which epinephrine can be visually detected an indicator displacement assay through a color change at micromolar concentrations.
在现代超分子化学中,使用人工受体在水性介质中选择性识别和传感神经递质是一个引人关注但具有挑战性的目标。尽管在一些神经递质(如多巴胺)的光学受体开发方面取得了进展,但在开发肾上腺素(一种至关重要的神经递质和广泛用于治疗心脏病发作的药物)的受体方面投入的努力有限。在此,合成了一种基于1,3 - 双苯并咪唑 - 苯衍生物与两个苯基硼酸共价连接的新型荧光分子受体(称为1),通过单晶X射线衍射对其进行了结构表征,并在生理pH值的水中深入研究了其作为四种基于儿茶酚胺的神经递质以及几种核苷、单糖和L - 酪氨酸的受体的性能。受体1具有水稳定性,在408 nm处表现出荧光发射,这源于配体内(IL)[π - π*]跃迁,TD - DFT计算支持了这一点。向1的水溶液中加入微摩尔浓度的肾上腺素/去甲肾上腺素会引起显著且快速的荧光变化,而在多巴胺、L - 多巴、腺苷、鸟苷、葡萄糖、果糖、半乳糖、核糖和L - 酪氨酸存在的情况下,仅观察到适度的光学变化。发现双硼酸受体1对肾上腺素表现出高亲和力( = 1.29 × 10 M),对其他密切相关的神经递质(包括多巴胺和L - 多巴)具有良好的选择性。肾上腺素对1的亲和力比去甲肾上腺素高一个数量级。这种分子受体对肾上腺素的亲和力/选择性仍然很少见。光谱技术(荧光、B NMR、荧光寿命)、质谱、单晶X射线衍射、DFT计算和分子中的原子分析表明,肾上腺素以1∶2(受体∶分析物)的化学计量比与1结合。这种两点识别涉及sp硼酸酯 - 儿茶酚缩合以及肾上腺素脂肪链与1的咪唑环之间的多个氢键(OH⋯N和NH⋯N),以及所得超分子结构中两个肾上腺素分子之间的分子间相互作用。1对肾上腺素的高效荧光响应可用于实际药物样品中这种生物分析物的定量传感。此外,开发了一种由1和商业染料茜素红S组成的显色传感体系,其中通过微摩尔浓度下的颜色变化,可通过指示剂置换法目视检测肾上腺素。