Thomas Caitlyn A, Alao John Paul, Smisek Thomas, Cheng Zishuo, Bethel Christopher R, Yang Kundi, Obaseki Ikponwmosa, Page Richard C, Bonomo Robert A, Oelschlaeger Peter, Fast Walter, Kravats Andrea N, Crowder Michael W
Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.
Department of Molecular Biosciences, The University of Texas, Austin, Texas 78712, United States.
ACS Infect Dis. 2025 Aug 8;11(8):2157-2168. doi: 10.1021/acsinfecdis.5c00138. Epub 2025 Jul 24.
β-Lactam-resistant bacterial infections are a serious concern worldwide. A common mechanism of β-lactam resistance is the expression of β-lactamases, which are capable of hydrolyzing the β-lactam bond in the most commonly used β-lactam antibiotics. Metallo-β-lactamases (MBLs) utilize 1 or 2 zinc ions for catalysis. One of the three most clinically relevant MBLs is Imipenemase (IMP). An important potential way to combat MBLs is to use an inhibitor in combination with an existing β-lactam drug. The current study investigates the mechanism of inhibition of preclinical boronic acid β-lactamase inhibitor RPX 7546 and mercaptomethyl bisthiazolidine D-CS319, which are two previously reported MBL inhibitors, with IMP-1 and its variant IMP-78 (V67F/S262G), chosen due to its improved efficiency hydrolyzing carbapenem β-lactams. A combination of analytical and biochemical experiments and modeling collectively offer a comprehensive understanding of the mechanism of inhibition by these two inhibitors. Our studies show that RPX 7546 is a less effective inhibitor of IMP-78, compared to IMP-1, while D-CS319 shows equally effective inhibition of both enzymes. The findings can be explained in light of the evolution of IMP-78 to overcome structural differences of substrates. Studying inhibitors with variants of clinically relevant MBLs is an area that is growing in importance in the literature. The findings of the current study highlight its significance and the urgent need for the discovery of an MBL inhibitor for clinical use.
β-内酰胺耐药菌感染是全球范围内的一个严重问题。β-内酰胺耐药的常见机制是β-内酰胺酶的表达,β-内酰胺酶能够水解最常用的β-内酰胺类抗生素中的β-内酰胺键。金属β-内酰胺酶(MBLs)利用1个或2个锌离子进行催化。临床上最相关的三种MBLs之一是亚胺培南酶(IMP)。对抗MBLs的一种重要潜在方法是将抑制剂与现有的β-内酰胺类药物联合使用。本研究调查了临床前硼酸β-内酰胺酶抑制剂RPX 7546和巯基甲基双噻唑烷D-CS319(这是两种先前报道的MBL抑制剂)对IMP-1及其变体IMP-78(V67F/S262G)的抑制机制,选择IMP-78是因为其水解碳青霉烯β-内酰胺的效率更高。分析实验、生化实验和建模相结合,共同提供了对这两种抑制剂抑制机制的全面理解。我们的研究表明,与IMP-1相比,RPX 7546对IMP-78的抑制效果较差,而D-CS319对这两种酶的抑制效果相同。这些发现可以根据IMP-78为克服底物结构差异而发生的进化来解释。研究与临床相关的MBL变体的抑制剂是文献中一个越来越重要的领域。本研究的结果突出了其重要性以及迫切需要发现一种临床可用的MBL抑制剂。