Paredes Renato, Cabral Juan B, Seriès Peggy
Departament of Psychology, Pontifical Catholic University of Peru, Lima, Peru.
Instituto de Investigaciones Psicológicas, Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
Neuroinformatics. 2025 Jul 24;23(3):40. doi: 10.1007/s12021-025-09738-1.
Multisensory integration is a fundamental neural mechanism crucial for understanding cognition. Multiple theoretical models exist to account for the computational processes underpinning this mechanism. However, there is an absence of a consolidated framework that facilitates the examination of multisensory integration across diverse experimental and computational contexts. We introduce Scikit-NeuroMSI, an accessible Python-based open-source framework designed to streamline the implementation and evaluation of computational models of multisensory integration. The capabilities of Scikit-NeuroMSI were demonstrated in enabling the implementation of multiple models of multisensory integration at different levels of analysis. Furthermore, we illustrate the utility of the software in systematically exploring the model's behavior in spatiotemporal causal inference tasks through parameter sweeps in simulations. Particularly, we conducted a comparative analysis of Bayesian and network models of multisensory integration to identify commonalities that may enable to bridge both levels of description, addressing a key research question within the field. We discuss the significance of this approach in generating computationally informed hypotheses in multisensory research. Recommendations for the improvement of this software and directions for future research using this framework are presented.
多感官整合是一种对理解认知至关重要的基本神经机制。存在多种理论模型来解释支撑这一机制的计算过程。然而,缺乏一个统一的框架来促进在不同实验和计算背景下对多感官整合的研究。我们引入了Scikit-NeuroMSI,这是一个基于Python的易于使用的开源框架,旨在简化多感官整合计算模型的实现和评估。Scikit-NeuroMSI的功能体现在能够在不同分析层面实现多种多感官整合模型。此外,我们通过模拟中的参数扫描,展示了该软件在系统探索模型在时空因果推理任务中的行为方面的效用。特别是,我们对多感官整合的贝叶斯模型和网络模型进行了比较分析,以识别可能有助于弥合两个描述层面的共性,解决了该领域的一个关键研究问题。我们讨论了这种方法在多感官研究中生成具有计算依据的假设方面的重要性。本文还提出了改进该软件的建议以及使用此框架进行未来研究的方向。