Abrica-González Paulina, Gómez-Arroyo Sandra, Sotelo-López Antonio, Jazcilevich-Diamant Aron, Flores-Márquez Ana Rosa, Cortés-Eslava Josefina
Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City, 04510, Mexico.
Departamento de Ingeniería en Comunicaciones y Electrónica, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Gustavo A. Madero, Mexico City, 07738, Mexico.
Environ Sci Pollut Res Int. 2025 Jun;32(30):18461-18477. doi: 10.1007/s11356-025-36726-4. Epub 2025 Jul 24.
As nanoparticles are increasingly incorporated into consumer products and specialized areas, the need to study their toxicity and the importance of caution in their use are becoming more evident. The use of these novel materials in the automotive industry is causing increased nanoparticle emissions into the atmosphere, sparking concerns due to recent toxicology reports. Detecting and characterizing nanostructured atmospheric pollutants represent a complex task that alternative methods like genotoxic bioindicators may overcome. Ricinus communis was selected as a model plant to describe the genotoxic effect of air-dispersed nanostructured materials, using comet assay to evaluate the DNA damage by exposure to ZnO and CuO nanoparticles (ZnO-NPs, CuO-NPs), and total chlorophyll was determined to correlate the results. The plants were exposed for 1.25 h by nebulizing dispersions of the nanoparticles, and their effects were evaluated at 24 h and 5 days after exposure. Time was essential in demonstrating the DNA damage induced by lower levels of CuO-NPs and ZnO-NPs, which showed more significant damage after 5 days than bulk materials. In both compounds (CuO and ZnO), significant differences were observed in the comparison of their nanoscale and their bulk form, which confirms that the lower size of the nanoparticles presents a more significant genotoxic potential. In the scanning electron microscopy (SEM) micrographs, the accumulation of nanoparticles was observed near the stomata. The study demonstrated the viability of the comet assay as a sensitive tool both to assess DNA damage from ZnO-NPs and CuO-NPs on R. communis as a bioindicator and to investigate the potential risks of emerging nanomaterials, emphasizing the need for caution in their use.
随着纳米颗粒越来越多地被纳入消费品和专业领域,研究其毒性的必要性以及谨慎使用它们的重要性变得愈发明显。这些新型材料在汽车工业中的使用导致纳米颗粒向大气中的排放量增加,由于最近的毒理学报告引发了人们的担忧。检测和表征纳米结构的大气污染物是一项复杂的任务,而基因毒性生物指示剂等替代方法可能会克服这一难题。蓖麻被选为模式植物,以描述空气分散的纳米结构材料的基因毒性效应,使用彗星试验评估暴露于氧化锌和氧化铜纳米颗粒(ZnO-NPs、CuO-NPs)对DNA的损伤,并测定总叶绿素以关联结果。通过雾化纳米颗粒分散液使植物暴露1.25小时,并在暴露后24小时和5天评估其影响。时间对于证明较低水平的CuO-NPs和ZnO-NPs诱导的DNA损伤至关重要,这些纳米颗粒在5天后显示出比块状材料更显著的损伤。在这两种化合物(CuO和ZnO)中,观察到它们的纳米级和块状形式存在显著差异,这证实了纳米颗粒较小的尺寸具有更大的基因毒性潜力。在扫描电子显微镜(SEM)显微照片中,观察到纳米颗粒在气孔附近积累。该研究证明了彗星试验作为一种敏感工具的可行性,既可以评估ZnO-NPs和CuO-NPs对作为生物指示剂的蓖麻的DNA损伤,也可以研究新兴纳米材料的潜在风险,强调了谨慎使用它们的必要性。