Tu Lorna, Choi Hervé H F, Clark Haley, Lloyd Samantha A M
Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.
Department of Medical Physics, BC Cancer - Vancouver, Vancouver, BC, Canada.
Phys Eng Sci Med. 2025 Jul 24. doi: 10.1007/s13246-025-01594-2.
Limited patient data availability presents a challenge for efficient machine learning (ML) model development. Recent studies have proposed methods to generate synthetic medical images but lack the corresponding prognostic information required for predicting outcomes. We present a cancer outcomes modelling approach that involves generating a comprehensive synthetic dataset which can accurately mimic a real dataset. A real public dataset containing computed tomography-based radiomic features and clinical information for 132 non-small cell lung cancer patients was used. A synthetic dataset of virtual patients was synthesized using a conditional tabular generative adversarial network. Models to predict two-year overall survival were trained on real or synthetic data using combinations of four feature selection methods (mutual information, ANOVA F-test, recursive feature elimination, random forest (RF) importance weights) and six ML algorithms (RF, k-nearest neighbours, logistic regression, support vector machine, XGBoost, Gaussian Naïve Bayes). Models were tested on withheld real data and externally validated. Real and synthetic datasets were similar, with an average one minus Kolmogorov-Smirnov test statistic of 0.871 for continuous features. Chi-square test confirmed agreement for discrete features (p < 0.001). XGBoost using RF importance-based features performed the most consistently for both datasets, with percent differences in balanced accuracy and area under the precision-recall curve of < 1.3%. Preliminary findings demonstrate the potential application of synthetic radiomic and clinical data augmentation for cancer outcomes modelling, although further validation with larger diverse datasets is crucial. While our approach was described in a lung context, it may be applied to other sites or endpoints.
有限的患者数据可用性给高效的机器学习(ML)模型开发带来了挑战。最近的研究提出了生成合成医学图像的方法,但缺乏预测结果所需的相应预后信息。我们提出了一种癌症预后建模方法,该方法涉及生成一个能够准确模拟真实数据集的综合合成数据集。使用了一个真实的公共数据集,该数据集包含132例非小细胞肺癌患者基于计算机断层扫描的放射组学特征和临床信息。使用条件表格生成对抗网络合成了虚拟患者的合成数据集。使用四种特征选择方法(互信息、方差分析F检验、递归特征消除、随机森林(RF)重要性权重)和六种ML算法(RF、k近邻、逻辑回归、支持向量机、XGBoost、高斯朴素贝叶斯)的组合,在真实或合成数据上训练预测两年总生存率的模型。在保留的真实数据上对模型进行测试并进行外部验证。真实数据集和合成数据集相似,连续特征的平均1减去柯尔莫哥洛夫-斯米尔诺夫检验统计量为0.871。卡方检验证实了离散特征的一致性(p < 0.001)。使用基于RF重要性特征的XGBoost在两个数据集上表现最为一致,平衡准确率和精确召回曲线下面积的百分比差异均<1.3%。初步研究结果表明,合成放射组学和临床数据增强在癌症预后建模中具有潜在应用,尽管使用更多样化的大型数据集进行进一步验证至关重要。虽然我们的方法是在肺癌背景下描述的,但它可能适用于其他部位或终点。