Kanno Shu, Sugisaki Kenji, Nakamura Hajime, Yamauchi Hiroshi, Sakuma Rei, Kobayashi Takao, Gao Qi, Yamamoto Naoki
Mitsubishi Chemical Corporation, Science & Innovation Center, Yokohama 227-8502, Japan.
Quantum Computing Center, Keio University, Yokohama 223-8522, Japan.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2425026122. doi: 10.1073/pnas.2425026122. Epub 2025 Jul 24.
We develop an energy calculation algorithm leveraging quantum phase difference estimation (QPDE) scheme and a tensor-network-based unitary compression method in the preparation of superposition states and time-evolution gates. Alongside its efficient implementation, this algorithm reduces depolarization noise affections exponentially. We demonstrated energy gap calculations for one-dimensional Hubbard models on IBM superconducting devices using circuits up to 32-system (plus one-ancilla) qubits, a five-fold increase over previous Quantum phase estimation (QPE) demonstrations, at the 7242 controlled-Z gate level of standard transpilation, utilizing a Q-CTRL error suppression module. Additionally, we propose a technique toward molecular executions using spatial orbital localization and index sorting, verified linear polyene simulations up to 21 qubits. Since QPDE can handle the same objectives as QPE, our algorithm represents a leap forward in quantum computing on real devices.
我们开发了一种能量计算算法,该算法在制备叠加态和时间演化门时利用量子相位差估计(QPDE)方案以及基于张量网络的酉压缩方法。除了高效实现外,该算法还能指数级降低退极化噪声的影响。我们在IBM超导设备上使用高达32系统(加一个辅助)量子比特的电路,针对一维哈伯德模型进行了能隙计算,这比之前的量子相位估计(QPE)演示增加了五倍,在标准转译的7242个受控Z门级别上,利用了Q-CTRL误差抑制模块。此外,我们提出了一种使用空间轨道定位和索引排序进行分子执行的技术,验证了高达21个量子比特的线性多烯模拟。由于QPDE可以处理与QPE相同的目标,我们的算法代表了真实设备上量子计算的一大进步。