Panahi Arghavan, Bakhtiari Vahid, Piadeh Farzad, Behzadian Kourosh
Smart Infrastructure and Green Technologies Research Group, School of Computing and Engineering, University of West London, St Mary's Rd, London, W5 5RF, UK.
School of Architecture & Built Environment, Faculty of Science Engineering & Built Environment, Deakin University, Geelong, VIC, 3220, Australia.
J Environ Manage. 2025 Sep;392:126615. doi: 10.1016/j.jenvman.2025.126615. Epub 2025 Jul 23.
Sustainable sludge management in wastewater treatment plants is a critical challenge that demands strategic planning and holistic evaluation tools. This study presents a novel data-driven framework for sustainable, multifunctional circular sludge management. Unlike conventional models, the framework integrates circular planning, scenario-based foresight, a data-driven approach, and sustainability assessment to identify optimal sludge reuse pathways and treatment alternatives. A dynamic 3D SWOT methodology is employed to prioritise circular actions. We also introduce a modified decision support system incorporating 15 new criteria across 39 parameters, supported by uncertainty analysis. To demonstrate the framework, we applied it to a wastewater treatment plant in Iran. Seven circular reuse strategies were assessed: sanitised landfill, compost for agriculture, incineration for bricks, road pavement, concrete paving blocks, incineration for ceramics, and clay-based pipelines. These were evaluated across 24,000 potential future scenarios. The model was run over 500 times to perform a comprehensive sensitivity analysis on strategic and assessment outcomes. Results identified composting use as the most optimal strategy. The most sustainable treatment configuration included dissolved air flotation, anaerobic digestion, and pressurised strip filters. Sensitivity analysis revealed key external and internal drivers, highlighted the importance of temporal attributes, and showed the influence of expert judgment. The framework delivers resilient, adaptive, and context-sensitive solutions for sustainable sludge management. It serves as a robust decision-making tool for infrastructure planners, policymakers, and environmental engineers. However, the approach has limitations, including dependence on data availability, equal probability for all scenarios, and assumptions in scenario modelling, which should be considered in broader applications.
污水处理厂的可持续污泥管理是一项严峻挑战,需要战略规划和整体评估工具。本研究提出了一个用于可持续、多功能循环污泥管理的新型数据驱动框架。与传统模型不同,该框架整合了循环规划、基于情景的前瞻性、数据驱动方法和可持续性评估,以确定最佳污泥再利用途径和处理方案。采用动态3D SWOT方法对循环行动进行优先级排序。我们还引入了一个经过改进的决策支持系统,该系统纳入了39个参数中的15个新标准,并得到不确定性分析的支持。为了演示该框架,我们将其应用于伊朗的一家污水处理厂。评估了七种循环再利用策略:卫生填埋、农业堆肥、制砖焚烧、道路铺设、混凝土铺路砖、陶瓷焚烧和粘土管道。在24000个潜在未来情景中对这些策略进行了评估。该模型运行了500多次,以对战略和评估结果进行全面的敏感性分析。结果确定堆肥利用是最优化策略。最可持续的处理配置包括溶气气浮、厌氧消化和压力带式过滤器。敏感性分析揭示了关键的外部和内部驱动因素,突出了时间属性的重要性,并显示了专家判断的影响。该框架为可持续污泥管理提供了有弹性、适应性强且因地制宜的解决方案。它是基础设施规划者、政策制定者和环境工程师的强大决策工具。然而,该方法存在局限性,包括依赖数据可用性、所有情景的概率均等以及情景建模中的假设,在更广泛的应用中应予以考虑。