Suppr超能文献

高光谱成像在通过液体树脂灌注监测复合材料制造中树脂固化方面的潜在应用。

Potential application of hyperspectral imaging for monitoring resin cure in composite manufacturing via liquid resin infusion.

作者信息

Zurutuza Lasa Xabier, Arévalo Díaz Laura, Poplawski Janusz, Builes Cárdenas Cristian, Grandal González Tania, Núñez Cascajero Arantzazu, Ruiz Lombera Rubén, Rodriguez Alonso Paula, Román Rodríguez Mario, Maestro-Watson Daniel, Eciolaza Echeverria Luka

机构信息

Digitalization Technologies, LORTEK Technological Centre, Basque Research and Technology Alliance (BRTA), Arranomendia Kalea 4A, Ordizia, 20240, Basque Country, Spain.

Advanced Composites Technologies, R&D Division, AIMEN Technology Centre, Polígono Industrial de Cataboi, Sector 2, Parcela 3, O Porriño, 36418, Galicia, Spain.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2026 Jan 5;344(Pt 2):126676. doi: 10.1016/j.saa.2025.126676. Epub 2025 Jul 17.

Abstract

This study investigates the feasibility of using Near-Infrared Hyperspectral Imaging (HSI) for monitoring the curing state in Liquid Resin Infusion (LRI) manufacturing. By capturing spectral reflectance data throughout the heating and curing phases of the process, we explore the potential of HSI as a non-destructive technique for assessing resin polymerization. Compared to conventional sensor-based methods, HSI offers two key advantages: it eliminates the need to embed sensors within the manufactured part and provides spatially resolved information across the entire surface, enabling the detection of cure inhomogeneities. First, an in-depth study was conducted on the spectral features captured by NIR-HSI and their temporal evolution throughout the process, comparing them with key absorption bands related to the epoxy resin used in LRI. Afterwards, spectral data was correlated with the curing state inferred from commercial dielectric sensors using regression models, including Partial Least Squares Regression (PLS-R) and Support Vector Regression (SVR). These regression models were trained using the full spectral range of a specific spatial region of interest, as well as wavelength subsets selected through feature selection techniques such as Mutual Information (MI) and Random Forest Regressor (RF). The results indicate a strong correlation between the spectral data and the inferred curing state, with the SVR model trained on the full spectral range achieving the highest performance (R=0.9983, RMSE = 0.0114, MAE = 0.0086). Moreover, the predicted curing maps display consistent trends across all defined regions of interest (ROIs), further demonstrating the capability of HSI to capture spatial variations in the curing process. These findings reinforce the potential of Near-Infrared Hyperspectral Imaging as a powerful, non-destructive tool for real-time monitoring of resin polymerization in LRI manufacturing.

摘要

本研究探讨了使用近红外高光谱成像(HSI)监测液体树脂灌注(LRI)制造过程中固化状态的可行性。通过在该过程的加热和固化阶段捕获光谱反射率数据,我们探索了HSI作为评估树脂聚合的无损技术的潜力。与传统的基于传感器的方法相比,HSI具有两个关键优势:它无需在制造部件中嵌入传感器,并能在整个表面提供空间分辨信息,从而能够检测固化不均匀性。首先,对近红外高光谱成像捕获的光谱特征及其在整个过程中的时间演变进行了深入研究,并将其与LRI中使用的环氧树脂相关的关键吸收带进行了比较。之后,使用回归模型(包括偏最小二乘回归(PLS-R)和支持向量回归(SVR))将光谱数据与从商用介电传感器推断出的固化状态相关联。这些回归模型使用特定感兴趣空间区域的全光谱范围以及通过互信息(MI)和随机森林回归器(RF)等特征选择技术选择的波长子集进行训练。结果表明光谱数据与推断的固化状态之间存在很强的相关性,在全光谱范围内训练的SVR模型表现最佳(R = 0.9983,RMSE = 0.0114,MAE = 0.0086)。此外,预测的固化图在所有定义的感兴趣区域(ROI)上显示出一致的趋势,进一步证明了HSI捕获固化过程中空间变化的能力。这些发现强化了近红外高光谱成像作为一种强大的无损工具用于实时监测LRI制造中树脂聚合的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验