Suppr超能文献

SimOutbreakSelection:一种基于模拟的工具,用于优化抽样设计和分析策略以检测疫情驱动的选择。

SimOutbreakSelection: a simulation-based tool to optimise sampling design and analysis strategies for detecting epidemic-driven selection.

作者信息

Santander Cindy G, Moltke Ida

机构信息

Department of Biology, University of Copenhagen, Copenhagen, Denmark.

出版信息

Nat Commun. 2025 Jul 24;16(1):6814. doi: 10.1038/s41467-025-61574-8.

Abstract

Throughout history, populations across species have been decimated by epidemic outbreaks. Recent studies have raised the enticing idea that such outbreaks have led to strong natural selection acting on disease-protective genetic variants in the host population. However, so far few, if any, clear examples of such selection exist. This could be because previous studies were underpowered to detect the type of selection an outbreak must induce: extremely short-term selection on standing variation. Here we present a simulation-based framework that allows users to explore under what circumstances selection scan methods like F have power to detect epidemic-driven selection on a variant. Using two examples, we illustrate how the framework can be used. The examples also show that comparing those who died from an outbreak to survivors has the potential to render higher power than more commonly used sampling schemes. And importantly, they show that even for severe outbreaks, like the Black Death (≈50% mortality), selection may have led to only a modest increase in allele frequency, suggesting large sample sizes are required to obtain appropriate power. We hope this framework can help in designing well-powered future studies and thus help clarify the evolutionary role epidemic-driven selection has played in different species.

摘要

纵观历史,跨物种的种群曾因疫情爆发而大量减少。最近的研究提出了一个诱人的观点,即此类疫情爆发导致了强大的自然选择作用于宿主种群中具有疾病保护作用的基因变异。然而,到目前为止,几乎没有(如果有的话)此类选择的明确例子。这可能是因为先前的研究能力不足,无法检测到疫情爆发必须引发的那种选择:对现有变异的极短期选择。在这里,我们提出了一个基于模拟的框架,允许用户探索在何种情况下,像F这样的选择扫描方法有能力检测出疫情驱动的对某一变异的选择。通过两个例子,我们说明了该框架的使用方法。这些例子还表明,将死于疫情的人与幸存者进行比较,有可能比更常用的抽样方案具有更高的检验效能。重要的是,它们表明,即使对于像黑死病(死亡率约50%)这样的严重疫情,选择可能只导致等位基因频率适度增加,这表明需要大样本量才能获得适当的检验效能。我们希望这个框架能够有助于设计未来检验效能充足的研究,从而有助于阐明疫情驱动的选择在不同物种中所起的进化作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验