文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种小蛋白质接近安装在具有受限通道的MOF-808孔中的仿生双(μ-氧代)二铜活性位点,会扰乱氧化酶纳米酶的底物选择性。

Approach of a small protein to the biomimetic bis-(μ-oxo) dicopper active-site installed in MOF-808 pores with restricted access perturbs substrate selectivity of oxidase nanozyme.

作者信息

Morajkar Rasmi V, Fatrekar Adarsh P, Vernekar Amit A

机构信息

Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute Chennai 600020 Tamil Nadu India

Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India.

出版信息

Chem Sci. 2024 Jun 10;15(28):10810-10822. doi: 10.1039/d4sc02136c. eCollection 2024 Jul 17.


DOI:10.1039/d4sc02136c
PMID:39027301
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11253172/
Abstract

Advances in nanozymes have taken shape over the past few years in several domains. However, persisting challenging limitations of selectivity, specificity, and efficiency necessitate careful attention to aid in the development of next-generation artificial enzymes. Despite nanozymes having significant therapeutic and biotechnological prospects, the multienzyme mimetic activities can compromise their intended applications. Furthermore, the lack of substrate selectivity can hamper crucial biological pathways. While working on addressing the challenges of nanozymes, in this work, we aim to highlight the interplay between the substrates and bis-(μ-oxo) dicopper active site-installed MOF-808 for selectively mimicking oxidase. This oxidase mimetic with a small pore-aperture (1.4 nm), similar to the opening of enzyme binding pockets, projects a tight control over the dynamics and the reactivity of substrates, making it distinct from the general oxidase nanozymes. Interestingly, the design and the well-regulated activity of this nanozyme effectively thwart DNA from approaching the active site, thereby preventing its oxidative damage. Crucially, we also show that despite these merits, the oxidase selectivity is compromised by small proteins such as cytochrome (Cyt ), having dimensions larger than the pore aperture of MOF-808. This reaction lucidly produces water molecules as a result of four electron transfer to an oxygen molecule. Such unintended side reactivities warrant special attention as they can perturb redox processes and several cellular energy pathways. Through this study, we provide a close look at designing next-generation artificial enzymes that can address the complex challenges for their utility in advanced applications.

摘要

在过去几年中,纳米酶在多个领域已初具规模。然而,在选择性、特异性和效率方面持续存在的具有挑战性的限制,需要我们予以密切关注,以助力下一代人工酶的开发。尽管纳米酶具有显著的治疗和生物技术前景,但其多酶模拟活性可能会影响其预期应用。此外,缺乏底物选择性可能会阻碍关键的生物途径。在致力于解决纳米酶面临的挑战时,在这项工作中,我们旨在强调底物与安装了双(μ-氧代)二铜活性位点的MOF-808之间的相互作用,以选择性模拟氧化酶。这种孔径较小(1.4纳米)的氧化酶模拟物,类似于酶结合口袋的开口,对底物的动力学和反应性进行了严格控制,使其有别于一般的氧化酶纳米酶。有趣的是,这种纳米酶的设计和良好调控的活性有效地阻止了DNA接近活性位点,从而防止其氧化损伤。至关重要的是,我们还表明,尽管有这些优点,但氧化酶的选择性会受到尺寸大于MOF-808孔径的小蛋白质如细胞色素(Cyt)的影响。该反应通过向氧分子进行四次电子转移清晰地产生水分子。这种意外的副反应值得特别关注,因为它们可能会扰乱氧化还原过程和一些细胞能量途径。通过这项研究,我们深入探讨了如何设计下一代人工酶,以应对其在先进应用中面临的复杂挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e2/11253172/00eca1f90e33/d4sc02136c-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e2/11253172/105339139076/d4sc02136c-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e2/11253172/38b586a38433/d4sc02136c-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e2/11253172/fc7f65a70c45/d4sc02136c-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e2/11253172/00eca1f90e33/d4sc02136c-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e2/11253172/105339139076/d4sc02136c-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e2/11253172/38b586a38433/d4sc02136c-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e2/11253172/fc7f65a70c45/d4sc02136c-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e2/11253172/00eca1f90e33/d4sc02136c-f4.jpg

相似文献

[1]
Approach of a small protein to the biomimetic bis-(μ-oxo) dicopper active-site installed in MOF-808 pores with restricted access perturbs substrate selectivity of oxidase nanozyme.

Chem Sci. 2024-6-10

[2]
Expanding limits of artificial enzymes: unprecedented catalysis by an oxidase nanozyme in activating a structural protein for covalent crosslinking and conferring remarkable proteolytic resistance.

Chem Sci. 2024-8-20

[3]
Structural and reactivity models for copper oxygenases: cooperative effects and novel reactivities.

Acc Chem Res. 2015-7-24

[4]
Data-Driven Evolutionary Design of Multienzyme-like Nanozymes.

J Am Chem Soc. 2024-3-20

[5]
Amino-Ligand-Coordinated Dicopper Active Sites Enable Catechol Oxidase-Like Activity for Chiral Recognition and Catalysis.

Nano Lett. 2023-1-25

[6]
Preparing Selective Nanozymes by Molecular Imprinting.

Methods Mol Biol. 2021

[7]
Copper-dioxygen adducts and the side-on peroxo dicopper(II)/bis(mu-oxo) dicopper(III) equilibrium: Significant ligand electronic effects.

Inorg Chem. 2006-4-3

[8]
Nanozymes: From New Concepts, Mechanisms, and Standards to Applications.

Acc Chem Res. 2019-7-5

[9]
Advancing stroke therapy: the potential of MOF-based nanozymes in biomedical applications.

Front Bioeng Biotechnol. 2024-5-9

[10]
Promoting Active Sites in MOF-Derived Homobimetallic Hollow Nanocages as a High-Performance Multifunctional Nanozyme Catalyst for Biosensing and Organic Pollutant Degradation.

ACS Appl Mater Interfaces. 2020-1-2

引用本文的文献

[1]
Nanozymes expanding the boundaries of biocatalysis.

Nat Commun. 2025-7-24

[2]
Expanding limits of artificial enzymes: unprecedented catalysis by an oxidase nanozyme in activating a structural protein for covalent crosslinking and conferring remarkable proteolytic resistance.

Chem Sci. 2024-8-20

本文引用的文献

[1]
Electron Lock Manipulates the Catalytic Selectivity of Nanozyme.

ACS Nano. 2024-1-30

[2]
Exploring the Specificity of Nanozymes.

ACS Nano. 2024-1-30

[3]
Bioinspired porous three-coordinated single-atom Fe nanozyme with oxidase-like activity for tumor visual identification via glutathione.

Nat Commun. 2023-11-6

[4]
Self-Cascade Ce-MOF-818 Nanozyme for Sequential Hydrolysis and Oxidation.

Small. 2024-3

[5]
Transition Metal High-Entropy Nanozyme: Multi-Site Orbital Coupling Modulated High-Efficiency Peroxidase Mimics.

Adv Sci (Weinh). 2023-11

[6]
Cu Single-Atom Catalysts for High-Selectivity Electrocatalytic Acetylene Semihydrogenation.

Angew Chem Int Ed Engl. 2023-8-14

[7]
Dual Active Centers Linked by a Reversible Electron Station as a Multifunctional Nanozyme to Induce Synergetically Enhanced Cascade Catalysis for Tumor-Specific Therapy.

J Am Chem Soc. 2023-6-14

[8]
Nitrogen-Centered Lactate Oxidase Nanozyme for Tumor Lactate Modulation and Microenvironment Remodeling.

J Am Chem Soc. 2023-5-10

[9]
Alternative Copper-Based Single-Atom Nanozyme with Superior Multienzyme Activities and NIR-II Responsiveness to Fight against Deep Tissue Infections.

Research (Wash D C). 2023

[10]
Approaches to Improving the Selectivity of Nanozymes.

Adv Mater. 2024-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索