Prabha K Lakshmi, Mengash Hanan Abdullah, Alqahtani Hamed, Allafi Randa
Department of Electronics and Communication Engineering, Chennai Institute of Technology, Chennai, 600069, Tamil Nadu, India.
Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
Sci Rep. 2025 Jul 24;15(1):27015. doi: 10.1038/s41598-025-13053-9.
Wireless Sensor Networks (WSNs) used in modern applications like environmental monitoring, smart cities, and healthcare systems depend on accurate sensor node localization. However, attaining accurate localization is challenging due to dynamic environmental conditions. Varying network densities and the interdependence of parameters such as anchor ratio, transmission range, and node density increase the Average Localization Error (ALE) in WSNs. Existing methodologies, including regression-based models, heuristic approaches, and optimization-driven methods, struggle to generalize across dynamic environments due to their reliance on static parameter configurations. Machine learning-based approaches have improved localization accuracy but require extensive labeled datasets and often lack adaptability to real-time variations. Traditional optimization techniques tend to converge with local optima, limiting their effectiveness in dynamically changing network topologies. To overcome these limitations, a novel Multi-Agent Reinforcement Learning (MARL) algorithm is proposed in this research, combined with Golden Jackal Optimization (GJO). The proposed optimized MARL framework dynamically learns optimal parameter adjustments through a reward mechanism, minimizing localization error and its variability even under dynamic network conditions. The GJO algorithm fine-tunes the hyperparameters of MARL to improve generalization across different WSN configurations. The proposed model is evaluated using a benchmark dataset, and performance metrics such as Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), R-squared (R²), and Mean Absolute Percentage Error (MAPE) are analyzed. Experimental results demonstrate that the proposed model significantly outperforms existing methods such as Grid Search RF, Bayesian Optimized RF, Gradient Boosting, and Deep Neural Networks. The proposed approach achieves an MSE of 0.02, MAE of 0.11, RMSE of 0.14, R² of 0.88, and MAPE of 2.5%, reflecting its ability to adapt dynamically and improve localization accuracy compared to static or heuristic models.
无线传感器网络(WSNs)应用于环境监测、智慧城市和医疗系统等现代应用中,依赖于精确的传感器节点定位。然而,由于动态环境条件,实现精确的定位具有挑战性。不同的网络密度以及诸如锚点比例、传输范围和节点密度等参数的相互依赖性增加了无线传感器网络中的平均定位误差(ALE)。现有的方法,包括基于回归的模型、启发式方法和优化驱动方法,由于依赖静态参数配置,难以在动态环境中进行泛化。基于机器学习的方法提高了定位精度,但需要大量带标签的数据集,并且通常缺乏对实时变化的适应性。传统的优化技术往往会收敛到局部最优解,限制了它们在动态变化的网络拓扑中的有效性。为了克服这些限制,本研究提出了一种新颖的多智能体强化学习(MARL)算法,并结合了金豺优化(GJO)。所提出的优化MARL框架通过奖励机制动态学习最优参数调整,即使在动态网络条件下也能最小化定位误差及其变异性。GJO算法对MARL的超参数进行微调,以提高在不同无线传感器网络配置下的泛化能力。使用基准数据集对所提出的模型进行评估,并分析均方误差(MSE)、平均绝对误差(MAE)、均方根误差(RMSE)、决定系数(R²)和平均绝对百分比误差(MAPE)等性能指标。实验结果表明,所提出的模型显著优于现有方法,如网格搜索随机森林、贝叶斯优化随机森林、梯度提升和深度神经网络。所提出的方法实现了0.02的MSE、0.11的MAE、0.14的RMSE、0.88的R²和2.5%的MAPE,反映了其与静态或启发式模型相比动态适应和提高定位精度的能力。