Liu Mingyang, Wang Xiaodong, Qiao Wei, Shang Hongbo, Yan Zhenguo, Qin Zhixin
Technology & Engineering, Xi'an Research Institute of China Coal (Group) Corporation, Xi'an 710077, China.
State Key Laboratory of Coal Mine Disaster Prevention and Control, Xi'an 710077, China.
Sensors (Basel). 2025 Jul 31;25(15):4717. doi: 10.3390/s25154717.
In the context of intelligent coal mine safety monitoring, an integrated prediction and early-warning method named MTGNN-Bayesian-IF-DBSCAN (Multi-Task Graph Neural Network-Bayesian Optimization-Isolation Forest-Density-Based Spatial Clustering of Applications with Noise) is proposed to address the challenges of gas concentration prediction and anomaly detection in coal mining faces. The MTGNN (Multi-Task Graph Neural Network) is first employed to model the spatiotemporal coupling characteristics of gas concentration and wind speed data. By constructing a graph structure based on sensor spatial dependencies and utilizing temporal convolutional layers to capture long short-term time-series features, the high-precision dynamic prediction of gas concentrations is achieved via the MTGNN. Experimental results indicate that the MTGNN outperforms comparative algorithms, such as CrossGNN and FourierGNN, in prediction accuracy, with the mean absolute error (MAE) being as low as 0.00237 and the root mean square error (RMSE) maintained below 0.0203 across different sensor locations (T0, T1, T2). For anomaly detection, a Bayesian optimization framework is introduced to adaptively optimize the fusion weights of IF (Isolation Forest) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise). Through defining the objective function as the F1 score and employing Gaussian process surrogate models, the optimal weight combination (w_if = 0.43, w_dbscan = 0.52) is determined, achieving an F1 score of 1.0. By integrating original concentration data and residual features, gas anomalies are effectively identified by the proposed method, with the detection rate reaching a range of 93-96% and the false alarm rate controlled below 5%. Multidimensional analysis diagrams (e.g., residual distribution, 45° diagonal error plot, and boxplots) further validate the model's robustness in different spatial locations, particularly in capturing abrupt changes and low-concentration anomalies. This study provides a new technical pathway for intelligent gas warning in coal mines, integrating spatiotemporal modeling, multi-algorithm fusion, and statistical optimization. The proposed framework not only enhances the accuracy and reliability of gas prediction and anomaly detection but also demonstrates potential for generalization to other industrial sensor networks.
在智能煤矿安全监测背景下,提出了一种名为MTGNN - 贝叶斯 - IF - DBSCAN(多任务图神经网络 - 贝叶斯优化 - 孤立森林 - 基于密度的噪声应用空间聚类)的集成预测与预警方法,以应对煤矿采掘工作面瓦斯浓度预测和异常检测的挑战。首先采用MTGNN(多任务图神经网络)对瓦斯浓度和风速数据的时空耦合特性进行建模。通过基于传感器空间依赖性构建图结构,并利用时间卷积层捕获长期短期时间序列特征,MTGNN实现了瓦斯浓度的高精度动态预测。实验结果表明,MTGNN在预测精度方面优于比较算法,如CrossGNN和FourierGNN,在不同传感器位置(T0、T1、T2)的平均绝对误差(MAE)低至0.00237,均方根误差(RMSE)保持在0.0203以下。对于异常检测,引入贝叶斯优化框架来自适应优化IF(孤立森林)和DBSCAN(基于密度的噪声应用空间聚类)的融合权重。通过将目标函数定义为F1分数并采用高斯过程代理模型,确定了最优权重组合(w_if = 0.43,w_dbscan = 0.52),实现了F1分数为1.0。通过整合原始浓度数据和残差特征,该方法有效识别了瓦斯异常,检测率达到93 - 96%,误报率控制在5%以下。多维分析图(如残差分布、45°对角线误差图和箱线图)进一步验证了模型在不同空间位置的鲁棒性,特别是在捕获突变和低浓度异常方面。本研究为煤矿智能瓦斯预警提供了一条新的技术途径,集成了时空建模、多算法融合和统计优化。所提出的框架不仅提高了瓦斯预测和异常检测的准确性和可靠性,还展示了推广到其他工业传感器网络的潜力。