Suppr超能文献

我认为用于在非增强头部CT中识别大血管闭塞的人工智能软件:一项针对美国人群的初步回顾性研究。

Methinks AI software for identifying large vessel occlusion in non-contrast head CT: A pilot retrospective study in American population.

作者信息

Sanders João Victor, Keigher Kiffon, Oliver Marion, Joshi Krishna, Lopes Demetrius

机构信息

Brain and Spine Institute, Advocate Health, Chicago, IL, USA.

出版信息

Interv Neuroradiol. 2025 Jul 25:15910199251362073. doi: 10.1177/15910199251362073.

Abstract

BackgroundNon-contrast computed tomography (NCCT) is the first image for stroke assessment, but its sensitivity for detecting large vessel occlusion (LVO) is limited. Artificial intelligence (AI) algorithms may contribute to a faster LVO diagnosis using only NCCT. This study evaluates the performance and the potential diagnostic time saving of Methinks LVO AI algorithm in a U.S. multi-facility stroke network.MethodsThis retrospective pilot study reviewed NCCT and computed tomography angiography (CTA) images between 2015 and 2023. The Methinks AI algorithm, designed to detect LVOs in the internal carotid artery and middle cerebral artery, was tested for sensitivity, specificity, and predictive values. A neuroradiologist reviewed cases to establish a gold standard. To evaluate potential time saving in workflow, time gaps between NCCT and CTA were analyzed and stratified into four groups in true positive cases: Group 1 (<10 min), Group 2 (10-30 min), Group 3 (30-60 min), and Group 4 (>60 min).ResultsFrom a total of 1155 stroke codes, 608 NCCT exams were analyzed. Methinks LVO demonstrated 75% sensitivity and 83% specificity, identifying 146 out of 194 confirmed LVO cases correctly. The PPV of the algorithm was 72%. The NPV was 83% (considering 'other occlusion', 'stenosis' and 'posteriors' as negatives), and 73% considered the same conditions as positives. Among the true positive cases, we found 112 patients Group 1, 32 patients in Group 2, 15 patients in Group 3, 3 patients in Group 4.ConclusionThe Methinks AI algorithm shows promise for improving LVO detection from NCCT, especially in resource limited settings. However, its sensitivity remains lower than CTA-based systems, suggesting the need for further refinement.

摘要

背景

非增强计算机断层扫描(NCCT)是中风评估的首张影像,但它检测大血管闭塞(LVO)的敏感性有限。人工智能(AI)算法可能有助于仅使用NCCT更快地诊断LVO。本研究评估了Methinks LVO AI算法在美国多机构中风网络中的性能以及潜在的诊断时间节省情况。

方法

这项回顾性试点研究回顾了2015年至2023年期间的NCCT和计算机断层扫描血管造影(CTA)图像。旨在检测颈内动脉和大脑中动脉LVO的Methinks AI算法进行了敏感性、特异性和预测值测试。由神经放射科医生复查病例以确立金标准。为评估工作流程中潜在的时间节省情况,分析了NCCT和CTA之间的时间间隔,并在真阳性病例中分为四组:第1组(<10分钟)、第2组(10 - 30分钟)、第3组(30 - 60分钟)和第4组(>60分钟)。

结果

在总共1155个中风编码中,分析了608例NCCT检查。Methinks LVO显示出75%的敏感性和83%的特异性,在194例确诊的LVO病例中正确识别出146例。该算法的阳性预测值为72%。阴性预测值为83%(将“其他闭塞”、“狭窄”和“后部病变”视为阴性),将相同情况视为阳性时为73%。在真阳性病例中,我们发现第1组有112例患者,第2组有32例患者,第3组有15例患者,第4组有3例患者。

结论

Methinks AI算法在改善从NCCT检测LVO方面显示出前景,特别是在资源有限的环境中。然而,其敏感性仍低于基于CTA的系统,表明需要进一步改进。

相似文献

7
Artificial intelligence for detecting keratoconus.人工智能在圆锥角膜检测中的应用。
Cochrane Database Syst Rev. 2023 Nov 15;11(11):CD014911. doi: 10.1002/14651858.CD014911.pub2.

本文引用的文献

3

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验