Suppr超能文献

人工智能驱动的大血管闭塞检测算法在急性缺血性脑卒中患者中的验证。

Validation of an artificial intelligence-driven large vessel occlusion detection algorithm for acute ischemic stroke patients.

机构信息

Department of Biomedical Engineering, University at Buffalo, USA.

Canon Stroke and Vascular Research Center, USA.

出版信息

Neuroradiol J. 2021 Oct;34(5):408-417. doi: 10.1177/1971400921998952. Epub 2021 Mar 3.

Abstract

Rapid and accurate diagnosis of large vessel occlusions (LVOs) in acute ischemic stroke (AIS) patients using automated software could improve clinical workflow in determining thrombectomy in eligible patients. Artificial intelligence-based methods could accomplish this; however, their performance in various clinical scenarios, relative to clinical experts, must be thoroughly investigated. We aimed to assess the ability of Canon's Stroke Solution LVO application in properly detecting and locating LVOs in AIS patients. Data from 202 LVO and 101 non-LVO AIS patients who presented with stroke-like symptoms between March 2019 and February 2020 were collected retrospectively. LVO patients had either an internal carotid artery (ICA) ( = 59), M1 middle cerebral artery (MCA) ( = 82) or M2 MCA ( = 61) occlusion. Computed tomography angiography (CTA) scans from each patient were pushed to the automation platform and analyzed. The algorithm's ability to detect LVOs was assessed using accuracy, sensitivity and Matthews correlation coefficients (MCCs) for each occlusion type. The following results were calculated for each occlusion type in the study (accuracy, sensitivity, MCC): ICA = (0.95, 0.90, 0.89), M1 MCA = (0.89, 0.77, 0.78) and M2 MCA = (0.80, 0.51, 0.59). For the non-LVO cohort, 98% (99/101) of cases were correctly predicted as LVO negative. Processing time for each case was 69.8 ± 1.1 seconds (95% confidence interval). Canon's Stroke Solution LVO application was able to accurately identify ICA and M1 MCA occlusions in addition to almost perfectly assessing when an LVO was not present. M2 MCA occlusion detection needs further improvement based on the sensitivity results displayed by the LVO detection algorithm.

摘要

使用自动化软件快速准确地诊断急性缺血性脑卒中(AIS)患者的大血管闭塞(LVOs)可以改善临床工作流程,以确定适合取栓的患者。基于人工智能的方法可以实现这一目标;然而,它们在各种临床情况下的性能,相对于临床专家,必须进行彻底的调查。我们旨在评估佳能的 Stroke Solution LVO 应用程序在正确检测和定位 AIS 患者中 LVOs 的能力。回顾性收集了 202 例 LVO 和 101 例非 LVO AIS 患者的数据,这些患者在 2019 年 3 月至 2020 年 2 月期间出现类似中风的症状。LVO 患者中有颈内动脉(ICA)( = 59)、M1 大脑中动脉(MCA)( = 82)或 M2 MCA( = 61)闭塞。每位患者的计算机断层血管造影(CTA)扫描都被推送到自动化平台进行分析。使用准确性、灵敏度和 Matthews 相关系数(MCC)评估算法检测 LVOs 的能力,每个闭塞类型的结果如下:ICA = (0.95,0.90,0.89),M1 MCA = (0.89,0.77,0.78)和 M2 MCA = (0.80,0.51,0.59)。对于非 LVO 队列,98%(99/101)的病例被正确预测为 LVO 阴性。每个病例的处理时间为 69.8 ± 1.1 秒(95%置信区间)。佳能的 Stroke Solution LVO 应用程序能够准确识别 ICA 和 M1 MCA 闭塞,并且几乎完美地评估了不存在 LVO 的情况。根据 LVO 检测算法显示的灵敏度结果,M2 MCA 闭塞检测需要进一步改进。

相似文献

1
Validation of an artificial intelligence-driven large vessel occlusion detection algorithm for acute ischemic stroke patients.
Neuroradiol J. 2021 Oct;34(5):408-417. doi: 10.1177/1971400921998952. Epub 2021 Mar 3.
3
Validation of a machine learning software tool for automated large vessel occlusion detection in patients with suspected acute stroke.
Neuroradiology. 2022 Dec;64(12):2245-2255. doi: 10.1007/s00234-022-02978-x. Epub 2022 May 24.
4
Fast Automatic Detection of Large Vessel Occlusions on CT Angiography.
Stroke. 2019 Dec;50(12):3431-3438. doi: 10.1161/STROKEAHA.119.027076. Epub 2019 Nov 4.
5
Diagnostic performance of an algorithm for automated large vessel occlusion detection on CT angiography.
J Neurointerv Surg. 2022 Aug;14(8):794-798. doi: 10.1136/neurintsurg-2021-017842. Epub 2021 Aug 19.
6
Automated Detection of Intracranial Large Vessel Occlusions on Computed Tomography Angiography: A Single Center Experience.
Stroke. 2019 Oct;50(10):2790-2798. doi: 10.1161/STROKEAHA.119.026259. Epub 2019 Sep 9.
7
Performance of Automated Algorithm in Large and Medium Vessel Occlusion Detection: A Real-World Experience.
AJNR Am J Neuroradiol. 2025 Mar 4;46(3):476-482. doi: 10.3174/ajnr.A8509.
8
AI software detection of large vessel occlusion stroke on CT angiography: a real-world prospective diagnostic test accuracy study.
J Neurointerv Surg. 2023 Jan;15(1):52-56. doi: 10.1136/neurintsurg-2021-018391. Epub 2022 Jan 27.
9
Large Vessel Occlusion in Acute Ischemic Stroke Patients: A Dual-Center Estimate Based on a Broad Definition of Occlusion Site.
J Stroke Cerebrovasc Dis. 2020 Feb;29(2):104504. doi: 10.1016/j.jstrokecerebrovasdis.2019.104504. Epub 2019 Nov 21.
10
Evaluation of CINA® LVO artificial intelligence software for detection of large vessel occlusion in brain CT angiography.
Eur J Radiol Open. 2023 Dec 15;12:100542. doi: 10.1016/j.ejro.2023.100542. eCollection 2024 Jun.

引用本文的文献

2
7
Emerging artificial intelligence-aided diagnosis and management methods for ischemic strokes and vascular occlusions: A comprehensive review.
World Neurosurg X. 2024 Feb 25;22:100303. doi: 10.1016/j.wnsx.2024.100303. eCollection 2024 Apr.
8
Evaluation of CINA® LVO artificial intelligence software for detection of large vessel occlusion in brain CT angiography.
Eur J Radiol Open. 2023 Dec 15;12:100542. doi: 10.1016/j.ejro.2023.100542. eCollection 2024 Jun.
10
Ischemic Stroke Etiology Classification by Ensemble Consensus Modeling Using Electronic Health Records.
Res Sq. 2023 Oct 31:rs.3.rs-3367169. doi: 10.21203/rs.3.rs-3367169/v1.

本文引用的文献

1
Use of a convolutional neural network to identify infarct core using computed tomography perfusion parameters.
Proc SPIE Int Soc Opt Eng. 2021 Feb;11596. doi: 10.1117/12.2579753. Epub 2021 Feb 15.
2
Radiology workload in clinical implementation of thrombectomy for acute ischemic stroke: experience from The Netherlands.
Neuroradiology. 2020 Jul;62(7):877-882. doi: 10.1007/s00234-020-02416-w. Epub 2020 Apr 5.
3
Performance of angiographic parametric imaging in locating infarct core in large vessel occlusion acute ischemic stroke patients.
J Med Imaging (Bellingham). 2020 Jan;7(1):016001. doi: 10.1117/1.JMI.7.1.016001. Epub 2020 Feb 11.
5
Feasibility study for use of angiographic parametric imaging and deep neural networks for intracranial aneurysm occlusion prediction.
J Neurointerv Surg. 2020 Jul;12(7):714-719. doi: 10.1136/neurintsurg-2019-015544. Epub 2019 Dec 10.
7
Automated Detection of Intracranial Large Vessel Occlusions on Computed Tomography Angiography: A Single Center Experience.
Stroke. 2019 Oct;50(10):2790-2798. doi: 10.1161/STROKEAHA.119.026259. Epub 2019 Sep 9.
8
Automatic radiomic feature extraction using deep learning for angiographic parametric imaging of intracranial aneurysms.
J Neurointerv Surg. 2020 Apr;12(4):417-421. doi: 10.1136/neurintsurg-2019-015214. Epub 2019 Aug 23.
10
Hypoperfusion ratio predicts infarct growth during transfer for thrombectomy.
Ann Neurol. 2018 Oct;84(4):616-620. doi: 10.1002/ana.25320. Epub 2018 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验