文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

大语言模型在中国医疗领域共享决策应用中的研究进展与启示

Research progress and implications of the application of large language model in shared decision-making in China's healthcare field.

作者信息

Li Xuejing, Chen Sihan, Meng Meiqi, Wang Ziyan, Jiang Hongzhan, Hao Yufang

机构信息

School of Nursing, Beijing University of Chinese Medicine, Beijing, China.

Evidence-Based Nursing Research Center, School of Nursing, Beijing University of Chinese Medicine, Beijing, China.

出版信息

Front Public Health. 2025 Jul 10;13:1605212. doi: 10.3389/fpubh.2025.1605212. eCollection 2025.


DOI:10.3389/fpubh.2025.1605212
PMID:40709042
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12287014/
Abstract

Shared Decision Making (SDM), as a modern medical decision-making model emphasizing patient participation, faces multidimensional challenges in China, including uneven distribution of medical resources, knowledge gaps, and inadequate cultural adaptation. The implementation of SDM in China is hindered by time constraints, insufficient patient willingness to participate, a lack of standardized decision support tools, and structural barriers such as healthcare reimbursement systems. Large Language Models (LLMs), with their powerful natural language processing capabilities, demonstrate unique advantages in enhancing communication efficiency, supporting personalized decision-making, and promoting multi-party collaboration. Key functionalities such as information integration, personalized support tools, and sentiment analysis significantly improve patient engagement and decision quality. However, LLMs still face limitations in localization, decision-chain completeness, and handling complex scenarios, particularly in understanding traditional Chinese medicine (TCM) knowledge and supporting family-oriented decision-making models. Future efforts should focus on constructing integrated knowledge graphs of biomedicine and Traditional Chinese Medicine, optimizing multi-layered expression capabilities, and improving model interpretability to promote LLMs' in-depth application in SDM within China, ultimately enhancing healthcare quality and patient satisfaction.

摘要

共享决策(SDM)作为一种强调患者参与的现代医疗决策模式,在中国面临多方面挑战,包括医疗资源分配不均、知识差距以及文化适应性不足等。中国SDM的实施受到时间限制、患者参与意愿不足、缺乏标准化决策支持工具以及医疗报销系统等结构性障碍的阻碍。大语言模型(LLMs)凭借其强大的自然语言处理能力,在提高沟通效率、支持个性化决策以及促进多方协作方面展现出独特优势。信息整合、个性化支持工具和情感分析等关键功能显著提升了患者参与度和决策质量。然而,LLMs在本地化、决策链完整性以及处理复杂场景方面仍面临局限,尤其是在理解中医知识和支持家庭导向决策模式方面。未来的努力应集中在构建生物医药与中医的综合知识图谱、优化多层表达能力以及提高模型可解释性,以促进LLMs在中国SDM中的深入应用,最终提升医疗质量和患者满意度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ca5/12287014/cf9213ce7469/fpubh-13-1605212-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ca5/12287014/63e43f40556a/fpubh-13-1605212-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ca5/12287014/1a1456108777/fpubh-13-1605212-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ca5/12287014/cf9213ce7469/fpubh-13-1605212-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ca5/12287014/63e43f40556a/fpubh-13-1605212-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ca5/12287014/1a1456108777/fpubh-13-1605212-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ca5/12287014/cf9213ce7469/fpubh-13-1605212-g003.jpg

相似文献

[1]
Research progress and implications of the application of large language model in shared decision-making in China's healthcare field.

Front Public Health. 2025-7-10

[2]
Empowering standardized residency training in China through large language models: problem analysis and solutions.

Ann Med. 2025-12

[3]
Shared decision-making in the treatment of adolescents diagnosed with depression: A cross-sectional survey of mental health professionals in China.

J Psychiatr Ment Health Nurs. 2024-6

[4]
Interventions for promoting participation in shared decision-making for children with cancer.

Cochrane Database Syst Rev. 2013-6-6

[5]
Shared decision-making for people with asthma.

Cochrane Database Syst Rev. 2017-10-3

[6]
Application of Large Language Models in Traditional Chinese Medicine: A State-of-the-Art Review.

Am J Chin Med. 2025

[7]
Examining How Technology Supports Shared Decision-Making in Oncology Consultations: Qualitative Thematic Analysis.

JMIR Cancer. 2025-6-11

[8]
Interventions for improving the adoption of shared decision making by healthcare professionals.

Cochrane Database Syst Rev. 2010-5-12

[9]
Evaluating and Improving Syndrome Differentiation Thinking Ability in Large Language Models: Method Development Study.

JMIR Med Inform. 2025-6-20

[10]
Shared decision-making interventions for people with mental health conditions.

Cochrane Database Syst Rev. 2022-11-11

引用本文的文献

[1]
Neurosurgical nurses' perspectives of patient-reported outcomes: a qualitative study.

BMC Nurs. 2025-8-11

本文引用的文献

[1]
Evaluating large language models for drafting emergency department encounter summaries.

PLOS Digit Health. 2025-6-17

[2]
Comparative Analysis of ChatGPT and Google Gemini in Generating Patient Educational Resources on Cardiac Health: A Focus on Exercise-Induced Arrhythmia, Sleep Habits, and Dietary Habits.

Cureus. 2025-3-18

[3]
Provision of Radiology Reports Simplified With Large Language Models to Patients With Cancer: Impact on Patient Satisfaction.

JCO Clin Cancer Inform. 2025-1

[4]
Uncertainty estimation in diagnosis generation from large language models: next-word probability is not pre-test probability.

JAMIA Open. 2025-1-10

[5]
Towards secure and trusted AI in healthcare: A systematic review of emerging innovations and ethical challenges.

Int J Med Inform. 2025-3

[6]
Evaluating ChatGPT's Multilingual Performance in Clinical Nutrition Advice Using Synthetic Medical Text: Insights from Central Asia.

J Nutr. 2025-3

[7]
Using Large Language Models to Detect Depression From User-Generated Diary Text Data as a Novel Approach in Digital Mental Health Screening: Instrument Validation Study.

J Med Internet Res. 2024-9-18

[8]
Comparative performance analysis of large language models: ChatGPT-3.5, ChatGPT-4 and Google Gemini in glucocorticoid-induced osteoporosis.

J Orthop Surg Res. 2024-9-18

[9]
On the development and validation of large language model-based classifiers for identifying social determinants of health.

Proc Natl Acad Sci U S A. 2024-9-24

[10]
Generative Large Language Models in Electronic Health Records for Patient Care Since 2023: A Systematic Review.

medRxiv. 2024-8-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索