Suppr超能文献

利用Swin Transformer通过多壳扩散磁共振成像增强阿尔茨海默病的诊断

Leveraging Swin Transformer for enhanced diagnosis of Alzheimer's disease using multi-shell diffusion MRI.

作者信息

Dessain Quentin, Delinte Nicolas, Hanseeuw Bernard, Dricot Laurence, Macq Benoît

出版信息

ArXiv. 2025 Jul 14:arXiv:2507.09996v1.

Abstract

OBJECTIVE

This study aims to support early diagnosis of Alzheimer's disease and detection of amyloid accumulation by leveraging the microstructural information available in multi-shell diffusion MRI (dMRI) data, using a vision transformer-based deep learning framework.

METHODS

We present a classification pipeline that employs the Swin Transformer, a hierarchical vision transformer model, on multi-shell dMRI data for the classification of Alzheimer's disease and amyloid presence. Key metrics from DTI and NODDI were extracted and projected onto 2D planes to enable transfer learning with ImageNet-pretrained models. To efficiently adapt the transformer to limited labeled neuroimaging data, we integrated Low-Rank Adaptation. We assessed the framework on diagnostic group prediction (cognitively normal, mild cognitive impairment, Alzheimer's disease dementia) and amyloid status classification.

RESULTS

The framework achieved competitive classification results within the scope of multi-shell dMRI-based features, with the best balanced accuracy of 95.2% for distinguishing cognitively normal individuals from those with Alzheimer's disease dementia using NODDI metrics. For amyloid detection, it reached 77.2% balanced accuracy in distinguishing amyloid-positive mild cognitive impairment/Alzheimer's disease dementia subjects from amyloid-negative cognitively normal subjects, and 67.9% for identifying amyloid-positive individuals among cognitively normal subjects. Grad-CAM-based explainability analysis identified clinically relevant brain regions, including the parahippocampal gyrus and hippocampus, as key contributors to model predictions.

CONCLUSION

This study demonstrates the promise of diffusion MRI and transformer-based architectures for early detection of Alzheimer's disease and amyloid pathology, supporting biomarker-driven diagnostics in data-limited biomedical settings.

摘要

目的

本研究旨在利用多壳扩散磁共振成像(dMRI)数据中可用的微观结构信息,通过基于视觉变换器的深度学习框架,支持阿尔茨海默病的早期诊断和淀粉样蛋白积累的检测。

方法

我们提出了一种分类流程,该流程在多壳dMRI数据上采用分层视觉变换器模型Swin Transformer,用于阿尔茨海默病和淀粉样蛋白存在情况的分类。提取了来自扩散张量成像(DTI)和神经突方向离散度与密度成像(NODDI)的关键指标,并将其投影到二维平面上,以便与在ImageNet上预训练的模型进行迁移学习。为了使变换器有效适应有限的标记神经影像数据,我们集成了低秩适应方法。我们在诊断组预测(认知正常、轻度认知障碍、阿尔茨海默病痴呆)和淀粉样蛋白状态分类方面评估了该框架。

结果

在基于多壳dMRI的特征范围内,该框架取得了具有竞争力的分类结果,使用NODDI指标区分认知正常个体与阿尔茨海默病痴呆个体时,最佳平衡准确率达到95.2%。对于淀粉样蛋白检测,在区分淀粉样蛋白阳性的轻度认知障碍/阿尔茨海默病痴呆受试者与淀粉样蛋白阴性的认知正常受试者时,平衡准确率达到77.2%,在认知正常受试者中识别淀粉样蛋白阳性个体的平衡准确率为67.9%。基于梯度加权类激活映射(Grad-CAM)的可解释性分析确定了包括海马旁回和海马体在内的与临床相关的脑区,是模型预测的关键贡献区域。

结论

本研究证明了扩散磁共振成像和基于变换器的架构在阿尔茨海默病和淀粉样蛋白病理学早期检测方面的前景,为数据有限的生物医学环境中基于生物标志物的诊断提供了支持。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验