Suppr超能文献

一种用于随机Petri网模型的简单近似贝叶斯推理神经代理

A Simple Approximate Bayesian Inference Neural Surrogate for Stochastic Petri Net Models.

作者信息

Manu Bright Kwaku, Reckell Trevor, Sterner Beckett, Jevtic Petar

机构信息

School of Computing and Augmented Intelligence Arizona State University, Tempe, 85281.

School of Mathematical and Statistical Sciences Arizona State University, Tempe, 85281.

出版信息

ArXiv. 2025 Jul 14:arXiv:2507.10714v1.

Abstract

Stochastic Petri Nets (SPNs) are an increasingly popular tool of choice for modeling discrete-event dynamics in areas such as epidemiology and systems biology, yet their parameter estimation remains challenging in general and in particular when transition rates depend on external covariates and explicit likelihoods are unavailable. We introduce a neural-surrogate (neural-network-based approximation of the posterior distribution) framework that predicts the coefficients of known covariate-dependent rate functions directly from noisy, partially observed token trajectories. Our model employs a lightweight 1D Convolutional Residual Network trained end-to-end on Gillespie-simulated SPN realizations, learning to invert system dynamics under realistic conditions of event dropout. During inference, Monte Carlo dropout provides calibrated uncertainty bounds together with point estimates. On synthetic SPNs with 20% missing events, our surrogate recovers rate-function coefficients with an RMSE = 0.108 and substantially runs faster than traditional Bayesian approaches. These results demonstrate that data-driven, likelihood-free surrogates can enable accurate, robust, and real-time parameter recovery in complex, partially observed discrete-event systems.

摘要

随机Petri网(SPNs)是一种在流行病学和系统生物学等领域中用于对离散事件动态进行建模的越来越受欢迎的工具,但一般来说,其参数估计仍然具有挑战性,特别是当转移率取决于外部协变量且无法获得明确的似然性时。我们引入了一个神经代理(基于神经网络的后验分布近似)框架,该框架可直接从有噪声的、部分观测到的令牌轨迹预测已知的协变量依赖率函数的系数。我们的模型采用了一个轻量级的一维卷积残差网络,该网络在Gillespie模拟的SPN实现上进行端到端训练,学习在事件缺失的现实条件下反转系统动态。在推理过程中,蒙特卡洛随机失活提供了校准后的不确定性界限以及点估计。在具有20%缺失事件的合成SPN上,我们的代理以均方根误差(RMSE)= 0.108恢复率函数系数,并且运行速度比传统贝叶斯方法快得多。这些结果表明,数据驱动的、无似然性的代理能够在复杂的、部分观测的离散事件系统中实现准确、稳健和实时的参数恢复。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ce/12288651/b34002881025/nihpp-2507.10714v1-f0007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验