Suppr超能文献

唾液生物传感在预测人类认知和身体表现方面的机遇

Salivary Biosensing Opportunities for Predicting Cognitive and Physical Human Performance.

作者信息

Goring Sara Anne, Gray Evan D, Miller Eric L, Brunyé Tad T

机构信息

Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA 02155, USA.

Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA.

出版信息

Biosensors (Basel). 2025 Jul 1;15(7):418. doi: 10.3390/bios15070418.

Abstract

Advancements in biosensing technologies have introduced opportunities for non-invasive, real-time monitoring of salivary biomarkers, enabling progress in fields ranging from personalized medicine to public health. Identifying and prioritizing the most critical analytes to measure in saliva is essential for estimating physiological status and forecasting performance in applied contexts. This study examined the value of 12 salivary analytes, including hormones, metabolites, and enzymes, for predicting cognitive and physical performance outcomes in military personnel (N = 115) engaged in stressful laboratory and field tasks. We calculated a series of features to quantify time-series analyte data and applied multiple regression techniques, including Elastic Net, Partial Least Squares, and Random Forest regression, to evaluate their predictive utility for five outcomes of interest: the ability to move, shoot, communicate, navigate, and sustain performance under stress. Predictive performance was poor across all models, with R-squared values near zero and limited evidence that salivary analytes provided stable or meaningful performance predictions. While certain features (e.g., post-peak slopes and variance metrics) appeared more frequently than others, no individual analyte emerged as a reliable predictor. These results suggest that salivary biomarkers alone are unlikely to provide robust insights into cognitive and physical performance outcomes. Future research may benefit from combining salivary and other biosensor data with contextual variables to improve predictive accuracy in real-world settings.

摘要

生物传感技术的进步为唾液生物标志物的非侵入性实时监测带来了机遇,推动了从个性化医疗到公共卫生等领域的发展。识别并确定唾液中最关键的分析物并确定其优先级,对于评估生理状态和预测实际应用中的表现至关重要。本研究考察了12种唾液分析物(包括激素、代谢物和酶)对参与压力较大的实验室和野外任务的军事人员(N = 115)的认知和身体表现结果的预测价值。我们计算了一系列特征来量化时间序列分析物数据,并应用了多种回归技术,包括弹性网络回归、偏最小二乘回归和随机森林回归,以评估它们对五个感兴趣的结果的预测效用:在压力下移动、射击、交流、导航和维持表现的能力。所有模型的预测性能都很差,决定系数值接近零,且几乎没有证据表明唾液分析物能提供稳定或有意义的表现预测。虽然某些特征(如峰值后斜率和方差指标)比其他特征出现得更频繁,但没有单个分析物成为可靠的预测指标。这些结果表明,仅唾液生物标志物不太可能为认知和身体表现结果提供有力的见解。未来的研究可能受益于将唾液和其他生物传感器数据与背景变量相结合,以提高在实际环境中的预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd6e/12292893/a7181b956146/biosensors-15-00418-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验