Suppr超能文献

通过TaC@AgNP纳米复合材料的静电自组装制备的用于检测福美双的表面增强拉曼光谱传感器。

A SERS Sensor Prepared via Electrostatic Self-Assembly of TaC@AgNP Nanocomposites for Detection of Ziram.

作者信息

Hua Kai, Li Liang, Liang Pei

机构信息

College of Science, China Jiliang University, Hangzhou 310018, China.

College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.

出版信息

Biosensors (Basel). 2025 Jul 3;15(7):426. doi: 10.3390/bios15070426.

Abstract

MXenes are a class of two-dimensional materials exhibiting excellent surface-enhanced Raman scattering (SERS) performance. Currently, the SERS studies of MXenes have been primarily focused on those with MX and MX structural motifs. In order to expand the SERS sensing application based on MXenes, in this paper, a SERS sensor made of TaC@AgNP nanocomposite material was fabricated by electrostatic self-assembly. Tests such as different concentrations of R6G probe molecules showed that the minimum detection limit of this SERS sensor was 10 M, demonstrating excellent sensitivity. When different test areas are selected, the relative error of intensity under the same wave number is less than 10.7%, showing good repeatability and consistency. Furthermore, the TaC@AgNP nanocomposite SERS sensor was used to detect the pesticide Ziram, and a quantitative model was established. Application detection indicates that this sensor has good sensitivity for the pesticide Ziram, and the minimum detection limit was 10 M, which exceeded national standard requirements. The findings of this study have potential application value in the fields of food safety and environmental protection.

摘要

MXenes是一类具有优异表面增强拉曼散射(SERS)性能的二维材料。目前,MXenes的SERS研究主要集中在具有MX和MX结构基序的材料上。为了扩展基于MXenes的SERS传感应用,本文通过静电自组装制备了一种由TaC@AgNP纳米复合材料制成的SERS传感器。对不同浓度的R6G探针分子等测试表明,该SERS传感器的最低检测限为10⁻⁹ M,显示出优异的灵敏度。当选择不同的测试区域时,相同波数下强度的相对误差小于10.7%,表现出良好的重复性和一致性。此外,TaC@AgNP纳米复合SERS传感器用于检测农药福美双,并建立了定量模型。应用检测表明,该传感器对农药福美双具有良好的灵敏度,最低检测限为10⁻⁹ M,超过了国家标准要求。本研究结果在食品安全和环境保护领域具有潜在的应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d05/12293568/58bd7ad6ef27/biosensors-15-00426-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验