文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于活细胞体外拉曼分析的自动化微流控平台。

An Automated Microfluidic Platform for In Vitro Raman Analysis of Living Cells.

作者信息

Klyusko Illya, Scalise Stefania, Guzzi Francesco, Randazzini Luigi, Zaccone Simona, Parrotta Elvira Immacolata, Lucchino Valeria, Merola Alessio, Cosentino Carlo, Krühne Ulrich, Aquila Isabella, Cuda Giovanni, Di Fabrizio Enzo, Candeloro Patrizio, Perozziello Gerardo

机构信息

Department of Experimental and Clinical Medicine, University of Catanzaro, Germaneto, 88100 Catanzaro, Italy.

Department of Chemistry and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyhgby, Denmark.

出版信息

Biosensors (Basel). 2025 Jul 16;15(7):459. doi: 10.3390/bios15070459.


DOI:10.3390/bios15070459
PMID:40710109
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12293637/
Abstract

We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical microscopes and Raman spectrometers, allowing for the non-invasive imaging and spectroscopic analysis of cell cultures in vitro. The microfluidic device, which reproduces a dynamic environment, was optimized to sustain a passive, gravity-driven flow of medium, eliminating the need for an external pumping system and reducing mechanical stress on the cells. The platform was tested using Raman analysis and adherent tumoral cells to assess proliferation prior and subsequent to hydrogen peroxide treatment for oxidative stress induction. The results demonstrated a successful adhesion of cells onto the substrate and their proliferation. Furthermore, the platform is suitable for carrying out optical monitoring of cultures and Raman analysis. In fact, it was possible to discriminate spectra deriving from control and hydrogen peroxide-treated cells in terms of DNA backbone and cellular membrane modification effects provoked by reactive oxygen species (ROS) activity. The 800-1100 cm band highlights the destructive effects of ROS on the DNA backbone's structure, as its rupture modifies its vibration; moreover, unpaired nucleotides are increased in treated sample, as shown in the 1154-1185 cm band. Protein synthesis deterioration, led by DNA structure damage, is highlighted in the 1257-1341 cm, 1440-1450 cm, and 1640-1670 cm bands. Furthermore, membrane damage is emphasized in changes in the 1270, 1301, and 1738 cm frequencies, as phospholipid synthesis is accelerated in an attempt to compensate for the membrane damage brought about by the ROS attack. This study highlights the potential use of this platform as an alternative to conventional culturing and analysis procedures, considering that cell culturing, optical imaging, and Raman spectroscopy can be performed simultaneously on living cells with minimal cellular stress and without the need for labeling or fixation.

摘要

我们展示了一个小型化、低成本且用户友好的微流控平台,以支持生物应用。该系统集成了一个小型培养箱,可提供可控的环境条件,并容纳用于长期细胞培养实验的微流控装置。该培养箱设计为与标准倒置光学显微镜和拉曼光谱仪兼容,允许对体外细胞培养进行非侵入性成像和光谱分析。微流控装置可再现动态环境,经过优化以维持培养基的被动重力驱动流动,无需外部泵送系统,并减少对细胞的机械应力。该平台使用拉曼分析和贴壁肿瘤细胞进行测试,以评估过氧化氢处理诱导氧化应激之前和之后的细胞增殖情况。结果表明细胞成功粘附在基质上并增殖。此外,该平台适用于对培养物进行光学监测和拉曼分析。事实上,根据活性氧(ROS)活性引起的DNA主链和细胞膜修饰效应,可以区分来自对照细胞和过氧化氢处理细胞的光谱。800 - 1100 cm波段突出了ROS对DNA主链结构的破坏作用,因为其断裂会改变其振动;此外,处理后的样品中未配对核苷酸增加,如1154 - 1185 cm波段所示。由DNA结构损伤导致的蛋白质合成恶化在1257 - 1341 cm、1440 - 1450 cm和1640 - 1670 cm波段中得到突出显示。此外,在1270、1301和1738 cm频率的变化中强调了膜损伤,因为磷脂合成加速以试图补偿ROS攻击造成的膜损伤。这项研究突出了该平台作为传统培养和分析程序替代方案的潜在用途,因为细胞培养、光学成像和拉曼光谱可以在活细胞上同时进行,对细胞的压力最小,且无需标记或固定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a217/12293637/5fc53108148a/biosensors-15-00459-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a217/12293637/5ff9a5879488/biosensors-15-00459-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a217/12293637/884480ba2974/biosensors-15-00459-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a217/12293637/28a4947585cd/biosensors-15-00459-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a217/12293637/fa3392cdeac8/biosensors-15-00459-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a217/12293637/9b23731b0818/biosensors-15-00459-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a217/12293637/7dc78dabb29a/biosensors-15-00459-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a217/12293637/5fc53108148a/biosensors-15-00459-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a217/12293637/5ff9a5879488/biosensors-15-00459-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a217/12293637/884480ba2974/biosensors-15-00459-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a217/12293637/28a4947585cd/biosensors-15-00459-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a217/12293637/fa3392cdeac8/biosensors-15-00459-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a217/12293637/9b23731b0818/biosensors-15-00459-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a217/12293637/7dc78dabb29a/biosensors-15-00459-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a217/12293637/5fc53108148a/biosensors-15-00459-g007.jpg

相似文献

[1]
An Automated Microfluidic Platform for In Vitro Raman Analysis of Living Cells.

Biosensors (Basel). 2025-7-16

[2]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[3]
Novel application of metabolic imaging of early embryos using a light-sheet on-a-chip device: a proof-of-concept study.

Hum Reprod. 2025-1-1

[4]
Automated devices for identifying peripheral arterial disease in people with leg ulceration: an evidence synthesis and cost-effectiveness analysis.

Health Technol Assess. 2024-8

[5]
Interventions to reduce harm from continued tobacco use.

Cochrane Database Syst Rev. 2016-10-13

[6]
[Volume and health outcomes: evidence from systematic reviews and from evaluation of Italian hospital data].

Epidemiol Prev. 2013

[7]
Comparison of self-administered survey questionnaire responses collected using mobile apps versus other methods.

Cochrane Database Syst Rev. 2015-7-27

[8]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[9]
Sexual Harassment and Prevention Training

2025-1

[10]
Systemic Inflammatory Response Syndrome

2025-1

本文引用的文献

[1]
Profiling signaling mediators for cell-cell interactions and communications with microfluidics-based single-cell analysis tools.

iScience. 2024-12-20

[2]
Time-resolved single-cell secretion analysis microfluidics.

Lab Chip. 2025-2-25

[3]
An Image-Based High-Throughput and High-Content Drug Screening Method Based on Microarray and Expansion Microscopy.

ACS Nano. 2023-8-22

[4]
Label-free drug interaction screening via Raman microscopy.

Proc Natl Acad Sci U S A. 2023-7-25

[5]
Saline dry fixation for improved cell composition analysis using Raman spectroscopy.

Analyst. 2023-6-12

[6]
Systematic analysis of myocardial immune progression in septic cardiomyopathy: Immune-related mechanisms in septic cardiomyopathy.

Front Cardiovasc Med. 2023-2-24

[7]
Chemical Imaging of Mass Transport Near the No-Slip Interface of a Microfluidic Device using Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy.

Anal Chem. 2023-3-21

[8]
Novel cell culture system for monitoring cells during continuous and variable negative-pressure wound therapy.

Skin Res Technol. 2023-1

[9]
Microfluidics for 3D Cell and Tissue Cultures: Microfabricative and Ethical Aspects Updates.

Cells. 2022-5-20

[10]
Reciprocal regulation of phosphatidylcholine synthesis and H3K36 methylation programs metabolic adaptation.

Cell Rep. 2022-4-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索