Suppr超能文献

时间分辨单细胞分泌分析微流控技术

Time-resolved single-cell secretion analysis microfluidics.

作者信息

Xu Ying, Chan Mei Tsz Jewel, Yang Ming, Meng Heixu, Chen Chia-Hung

机构信息

Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.

出版信息

Lab Chip. 2025 Feb 25;25(5):1282-1295. doi: 10.1039/d4lc00904e.

Abstract

Revealing how individual cells alter their secretions over time is crucial for understanding their responses to environmental changes. Key questions include: When do cells modify their functions and states? What transitions occur? Insights into the kinetic secretion trajectories of various cell types are essential for unraveling complex biological systems. This review highlights seven microfluidic technologies for time-resolved single-cell secretion analysis: 1. Microwell real-time electrical detection: uses microelectrodes for precise, cell-specific, real-time measurement of secreted molecules. 2. Microwell real-time optical detection: employs advanced optical systems for real-time, multiplexed monitoring of cellular secretions. 3. Microvalve real-time optical detection: dynamically analyzes secretions under controlled stimuli, enabling detailed kinetic studies at the single-cell level. 4. Droplet real-time optical detection: provides superior throughput by generating droplets containing single cells and sensors for high-throughput screening. 5. Microwell time-barcoded optical detection: utilizes sequential barcoding techniques to facilitate scalable assays for tracking multiple secretions over time. 6. Microvalve time-barcoded optical detection: incorporates automated time-barcoding micro-valves for robust and scalable analysis. 7. Microwell time-barcoded sequencing: captures and labels secretions for sequencing, enabling multidimensional analysis, though currently limited to a few time points and extended intervals. This review specifically addresses the challenges of achieving high-resolution timing measurements with short intervals while maintaining scalability for single-cell screening. Future advancements in microfluidic devices, integrating innovative barcoding technologies, advanced imaging technologies, artificial intelligence-powered decoding and analysis, and automations are anticipated to enable highly sensitive, scalable, high-throughput single-cell dynamic analysis. These developments hold great promise for deepening our understanding of biosystems by exploring single-cell timing responses on a larger scale.

摘要

揭示单个细胞如何随时间改变其分泌物对于理解它们对环境变化的反应至关重要。关键问题包括:细胞何时改变其功能和状态?发生了哪些转变?深入了解各种细胞类型的动态分泌轨迹对于解析复杂的生物系统至关重要。本综述重点介绍了七种用于时间分辨单细胞分泌分析的微流控技术:1. 微孔实时电检测:使用微电极对分泌分子进行精确的、细胞特异性的实时测量。2. 微孔实时光学检测:采用先进的光学系统对细胞分泌物进行实时、多重监测。3. 微阀实时光学检测:在受控刺激下动态分析分泌物,能够在单细胞水平上进行详细的动力学研究。4. 液滴实时光学检测:通过生成包含单细胞和传感器的液滴来提供卓越的通量,用于高通量筛选。5. 微孔时间条形码光学检测:利用顺序条形码技术促进可扩展的分析,以随时间跟踪多种分泌物。6. 微阀时间条形码光学检测:结合自动时间条形码微阀进行强大且可扩展的分析。7. 微孔时间条形码测序:捕获并标记分泌物以进行测序,实现多维分析,尽管目前仅限于少数时间点和较长间隔。本综述特别讨论了在保持单细胞筛选可扩展性的同时,实现短间隔高分辨率定时测量所面临的挑战。预计微流控设备未来的进展,整合创新的条形码技术、先进的成像技术、人工智能驱动的解码和分析以及自动化,将实现高度灵敏、可扩展、高通量的单细胞动态分析。这些进展有望通过在更大规模上探索单细胞定时反应,加深我们对生物系统的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验