Suppr超能文献

使用衰减全反射傅里叶变换红外光谱法对微流控设备无滑移界面附近的质量传递进行化学成像。

Chemical Imaging of Mass Transport Near the No-Slip Interface of a Microfluidic Device using Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy.

机构信息

Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9 Canada.

Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9 Canada.

出版信息

Anal Chem. 2023 Mar 21;95(11):4940-4949. doi: 10.1021/acs.analchem.2c04880. Epub 2023 Mar 7.

Abstract

Mass transport in geometrically confined environments is fundamental to microfluidic applications. Measuring the distribution of chemical species on flow requires the use of spatially resolved analytical tools compatible with microfluidic materials and designs. Here, the implementation of an attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) imaging (macro-ATR) approach for chemical mapping of species in microfluidic devices is described. The imaging method is configurable between a large field of view, single-frame imaging, and the use of image stitching to build composite chemical maps. Macro-ATR is used to quantify transverse diffusion in the laminar streams of coflowing fluids in dedicated microfluidic test devices. It is demonstrated that the ATR evanescent wave, which primarily probes the fluid within ∼500 nm of the channel surface, provides accurate quantification of the spatial distribution of species in the entire microfluidic device cross section. This is the case when flow and channel conditions promote vertical concentration contours in the channel as verified by three-dimensional numeric simulations of mass transport. Furthermore, the validity of treating the mass transport problem in a simplified and faster approach using reduced dimensionality numeric simulations is described. Simplified one-dimensional simulations, for the specific parameters used herein, overestimate diffusion coefficients by a factor of approximately 2, whereas full three-dimensional simulations accurately agree with experimental results.

摘要

在几何约束环境中,质量传递对于微流控应用至关重要。测量流中化学物质的分布需要使用与微流控材料和设计兼容的空间分辨分析工具。这里描述了一种衰减全反射-傅里叶变换红外光谱(ATR-FTIR)成像(宏观 ATR)方法,用于对微流控器件中的化学物质进行化学测绘。成像方法可在大视场、单帧成像之间进行配置,并使用图像拼接来构建复合化学图。宏观 ATR 用于定量共流流动层流中的横向扩散在专用微流控测试设备中。结果表明,ATR 消逝波主要探测通道表面附近 500nm 内的流体,可准确量化整个微流控器件横截面中物质的空间分布。当流动和通道条件促进通道中的垂直浓度轮廓时,就会出现这种情况,这通过质量传输的三维数值模拟得到了验证。此外,还描述了使用简化和更快的方法,通过降维数值模拟处理质量传输问题的有效性。对于本文中使用的特定参数,简化的一维模拟会将扩散系数高估约 2 倍,而完整的三维模拟则与实验结果准确一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验