Ceddia Mario, Montesani Lorenzo, Comuzzi Luca, Cipollina Alessandro, Deporter Douglas A, Di Pietro Natalia, Trentadue Bartolomeo
Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, 70125 Bari, Italy.
Independent Researcher, 00131 Rome, Italy.
J Funct Biomater. 2025 Jul 14;16(7):260. doi: 10.3390/jfb16070260.
Using ultra-short dental implants is a promising alternative to extensive bone grafting procedures for patients with atrophic posterior mandibles and vertical bone loss. However, the amount of insertion torque (IT) applied during implant placement significantly influences stress distribution in the peri-implant bone, which affects implant stability and long-term success.
This study used finite element analysis (FEA) to examine how different insertion torques (35 N·cm and 75 N·cm) affect stress distribution in cortical and trabecular bone types D2 and D4 surrounding ultra-short implants. Von Mises equivalent stress values were compared with ultimate bone strength thresholds to evaluate the potential for microdamage during insertion.
The findings demonstrate that increasing IT from 35 N·cm to 75 N·cm led to a significant increase in peri-implant bone stress. Specifically, cortical bone stress in D4 bone increased from approximately 79 MPa to 142 MPa with higher IT, exceeding physiological limits and elevating the risk of microfractures and bone necrosis. In contrast, lower IT values kept stress within safe limits, ensuring optimal primary stability without damaging the bone. These results underscore the need to strike a balance between achieving sufficient implant stability and avoiding mechanical trauma to the surrounding bone.
Accurate control of insertion torque during the placement of ultra-short dental implants is crucial to minimize bone damage and promote optimal osseointegration. Excessive torque, especially in low-density bone, can compromise implant success by inducing excessive stress, thereby increasing the risk of early failure.
对于下颌后牙萎缩和垂直骨量丧失的患者,使用超短牙种植体是广泛骨移植手术的一种有前景的替代方法。然而,种植体植入过程中施加的植入扭矩(IT)量会显著影响种植体周围骨组织中的应力分布,进而影响种植体稳定性和长期成功率。
本研究采用有限元分析(FEA)来研究不同的植入扭矩(35 N·cm和75 N·cm)如何影响超短种植体周围D2和D4型皮质骨和松质骨中的应力分布。将冯·米塞斯等效应力值与极限骨强度阈值进行比较,以评估植入过程中微损伤的可能性。
研究结果表明,将植入扭矩从35 N·cm增加到75 N·cm会导致种植体周围骨应力显著增加。具体而言,在较高的植入扭矩下,D4骨中的皮质骨应力从约79 MPa增加到142 MPa,超过了生理极限,增加了微骨折和骨坏死的风险。相比之下,较低的植入扭矩值将应力保持在安全范围内,确保了最佳的初期稳定性,同时不会损伤骨组织。这些结果强调了在实现足够的种植体稳定性和避免对周围骨组织造成机械损伤之间取得平衡的必要性。
在植入超短牙种植体时精确控制植入扭矩对于最小化骨损伤和促进最佳骨结合至关重要。过大的扭矩,尤其是在低密度骨中,会因诱导过大应力而危及种植体成功,从而增加早期失败的风险。