Hsueh Po-Yuan, Yamaguchi Yoko, Yajima Yasutomo
Tokyo Clinic, Matsumoto Dental University, 1040061, Tokyo, Japan.
J Dent Sci. 2025 Jul;20(3):1861-1868. doi: 10.1016/j.jds.2025.03.029. Epub 2025 Apr 7.
BACKGROUND/PURPOSE: This study examined the effect of insertion load on implant primary stability by evaluating the insertion torque and insertion time in various implant designs.
Four implant designs were tested, including one cylindrical implant standard (S), two hybrid implants tapered effect (TE) and bone level (BL), and one conical implant bone level tapered (BLT). Polyurethane bone models of the maxillary posterior region were used. Insertion torque value (ITV) and insertion time, defined as the duration from implant placement initiation to platform alignment, were recorded under two load conditions, the minimum load and a load of 5.0 newton (N). A torque meter was used to capture torque-time curves, and the mean and standard deviation of ITV were calculated. Data were analyzed using a paired t-test ( < 0.05).
The minimum insertion load varied by design: implant S required 2.5 N, implants TE and BL each required 2.0 N, and implant BLT required 1.0 N. At minimum load, insertion torque was 8.68 N cm for implant S, 6.64 N cm for implant TE, 12.29 N cm for implant BL, and 29.52 N cm for implant BLT. Under 5.0 N, the values were 8.12, 7.82, 14.89, and 30.53 N cm, respectively. Insertion time decreased by up to 12.52 % from 1.0 N to 5.0 N, with significant differences in implant BLT.
Hybrid implants are more sensitive to load variations. Optimizing the insertion load based on implant design can enhance clinical outcomes. The insertion load is a critical but often overlooked factor in primary implant stability.
背景/目的:本研究通过评估不同种植体设计中的植入扭矩和植入时间,研究植入负荷对种植体初期稳定性的影响。
测试了四种种植体设计,包括一种圆柱形标准种植体(S)、两种混合种植体(锥形效应[TE]和骨水平[BL])以及一种锥形骨水平种植体(BLT)。使用上颌后部区域的聚氨酯骨模型。在两种负荷条件下,即最小负荷和5.0牛顿(N)的负荷下,记录植入扭矩值(ITV)和植入时间,植入时间定义为从开始植入种植体到平台对齐的持续时间。使用扭矩计获取扭矩-时间曲线,并计算ITV的平均值和标准差。采用配对t检验分析数据(<0.05)。
最小植入负荷因设计而异:种植体S需要2.5 N,种植体TE和BL各需要2.0 N,种植体BLT需要1.0 N。在最小负荷下,种植体S的植入扭矩为8.68 N·cm,种植体TE为6.64 N·cm,种植体BL为12.29 N·cm,种植体BLT为29.52 N·cm。在5.0 N负荷下,相应的值分别为8.12、7.82、14.89和30.53 N·cm。植入时间从1.0 N到5.0 N最多减少了12.52%,种植体BLT有显著差异。
混合种植体对负荷变化更敏感。根据种植体设计优化植入负荷可改善临床效果。植入负荷是种植体初期稳定性的一个关键但常被忽视的因素。