Skitel Moshe Michal, Krishtul Stasia, Brandis Anastasia, Hayam Rotem, Hamias Shani, Faraj Mazal, Davidov Tzila, Kovrigina Inna, Baruch Limor, Machluf Marcelle
Faculty of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
The Interdisciplinary Program for Biotechnology, Technion, Haifa 32000, Israel.
Gels. 2025 Jul 2;11(7):517. doi: 10.3390/gels11070517.
Type 1 diabetes (T1D) is caused by autoimmune-mediated destruction of pancreatic β-cells, resulting in insulin deficiency. While islet transplantation presents a potential therapeutic approach, its clinical application is impeded by limited donor availability and the risk of immune rejection. This study proposes an innovative islet encapsulation strategy that utilizes decellularized porcine pancreatic extracellular matrix (pECM) as the sole biomaterial to engineer bioactive, immunoprotective microcapsules. Rat islets were encapsulated within pECM-based microcapsules using the electrospray technology and were compared to conventional alginate-based microcapsules in terms of viability, function, and response to hypoxic stress. The pECM microcapsules maintained a spherical morphology, demonstrating mechanical robustness, and preserving essential ECM components (collagen I/IV, laminin, fibronectin). Encapsulated islets exhibited sustained viability and superior insulin secretion over a two-week period compared to alginate controls. The expression of key β-cell transcription factors (PDX1, MAFA) and structural integrity were preserved. Under hypoxic conditions, pECM microcapsules significantly reduced islet apoptosis, improved structural retention, and promoted functional recovery, likely due to antioxidant and ECM-derived cues inherent to the pECM. In vivo transplantation in immunocompetent mice confirmed the biocompatibility of pECM microcapsules, with minimal immune responses, stable insulin/glucagon expression, and no adverse systemic effects. These findings position pECM-based microencapsulation as a promising strategy for creating immunoprotective, bioactive niches for xenogeneic islet transplantation, with the potential to overcome current limitations in cell-based diabetes therapy.
1型糖尿病(T1D)是由自身免疫介导的胰腺β细胞破坏引起的,导致胰岛素缺乏。虽然胰岛移植是一种潜在的治疗方法,但其临床应用受到供体可用性有限和免疫排斥风险的阻碍。本研究提出了一种创新的胰岛封装策略,该策略利用脱细胞猪胰腺细胞外基质(pECM)作为唯一的生物材料来构建具有生物活性、免疫保护作用的微胶囊。使用电喷雾技术将大鼠胰岛封装在基于pECM的微胶囊中,并在活力、功能和对缺氧应激的反应方面与传统的基于海藻酸盐的微胶囊进行比较。pECM微胶囊保持球形形态,显示出机械稳定性,并保留了重要的细胞外基质成分(胶原蛋白I/IV、层粘连蛋白、纤连蛋白)。与海藻酸盐对照组相比,封装的胰岛在两周内表现出持续的活力和优异的胰岛素分泌。关键β细胞转录因子(PDX1、MAFA)的表达和结构完整性得以保留。在缺氧条件下,pECM微胶囊显著减少胰岛凋亡,改善结构保留,并促进功能恢复,这可能归因于pECM固有的抗氧化和细胞外基质衍生信号。在有免疫活性的小鼠体内移植证实了pECM微胶囊的生物相容性,免疫反应最小,胰岛素/胰高血糖素表达稳定,且无不良全身影响。这些发现表明基于pECM的微封装是一种有前景的策略,可为异种胰岛移植创造免疫保护、生物活性微环境,有可能克服当前基于细胞的糖尿病治疗中的局限性。