Guzmán Gómez Randy, Lopez Lopez Guadalupe, Alvarado Victor M, Lopez Lopez Froylan, Esqueda Cisneros Eréndira, López Moreno Hazel
TecNM/Centro Nacional de Investigación y Desarrollo Tecnológico (TecNM/CENIDET), Interior Internado Palmira s/n, Cuernavaca 62493, Morelos, Mexico.
San Peregrino Cancer Center, Republica de Ecuador 103 (int 407), Las Americas, Aguascalientes 20230, Aguascalientes, Mexico.
Tomography. 2025 Jun 30;11(7):78. doi: 10.3390/tomography11070078.
The rapid growth of artificial intelligence, particularly in the field of deep learning, has opened up new advances in analyzing and processing large and complex datasets. Prospects and emerging trends in this area engage the development of methods, techniques, and algorithms to build autonomous systems that perform tasks with minimal human action. In medical practice, radiological imaging technologies systematically boost progress in the clinical monitoring of cancer through the information that can be analyzed in these images. This review gives insight into deep learning-based approaches that strengthen the assessment of the response to the treatment of non-small-cell lung cancer. This systematic survey delves into the various approaches to morphological and metabolic changes observed in computerized tomography (CT) and positron emission tomography (PET) imaging. We highlight the challenges and opportunities for feasible integration of deep learning computer-based tools in evaluating treatments in lung cancer patients, after which CT and PET-based strategies are contrasted. The investigated deep learning methods are organized and described as instruments for classification, clustering, and prediction, which can contribute to the design of automated and objective assessment of lung tumor responses to treatments.
人工智能的快速发展,尤其是在深度学习领域,为分析和处理大型复杂数据集带来了新进展。该领域的前景和新兴趋势涉及开发方法、技术和算法,以构建能以最少人类干预执行任务的自主系统。在医学实践中,放射成像技术通过可在这些图像中分析的信息,系统性地推动了癌症临床监测的进展。本综述深入探讨了基于深度学习的方法,这些方法加强了对非小细胞肺癌治疗反应的评估。这项系统性调查深入研究了在计算机断层扫描(CT)和正电子发射断层扫描(PET)成像中观察到的形态和代谢变化的各种方法。我们强调了将基于深度学习的计算机工具切实整合到肺癌患者治疗评估中的挑战和机遇,之后对比了基于CT和PET的策略。所研究的深度学习方法被组织并描述为用于分类、聚类和预测的工具,这有助于设计对肺肿瘤治疗反应的自动化和客观评估。