Suppr超能文献

用于支持肿瘤学中患者相关决策的经过外部验证且具有临床实用性的机器学习算法:一项范围综述。

Externally validated and clinically useful machine learning algorithms to support patient-related decision-making in oncology: a scoping review.

作者信息

Santos Catarina Sousa, Amorim-Lopes Mário

机构信息

Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal.

出版信息

BMC Med Res Methodol. 2025 Feb 21;25(1):45. doi: 10.1186/s12874-025-02463-y.

Abstract

BACKGROUND

This scoping review systematically maps externally validated machine learning (ML)-based models in cancer patient care, quantifying their performance, and clinical utility, and examining relationships between models, cancer types, and clinical decisions. By synthesizing evidence, this study identifies, strengths, limitations, and areas requiring further research.

METHODS

The review followed the Joanna Briggs Institute's methodology, Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines, and the Population, Concept, and Context mnemonic. Searches were conducted across Embase, IEEE Xplore, PubMed, Scopus, and Web of Science (January 2014-September 2022), targeting English-language quantitative studies in Q1 journals (SciMago Journal and Country Ranking > 1) that used ML to evaluate clinical outcomes for human cancer patients with commonly available data. Eligible models required external validation, clinical utility assessment, and performance metric reporting. Studies involving genetics, synthetic patients, plants, or animals were excluded. Results were presented in tabular, graphical, and descriptive form.

RESULTS

From 4023 deduplicated abstracts and 636 full-text reviews, 56 studies (2018-2022) met the inclusion criteria, covering diverse cancer types and applications. Convolutional neural networks were most prevalent, demonstrating high performance, followed by gradient- and decision tree-based algorithms. Other algorithms, though underrepresented, showed promise. Lung and digestive system cancers were most frequently studied, focusing on diagnosis and outcome predictions. Most studies were retrospective and multi-institutional, primarily using image-based data, followed by text-based and hybrid approaches. Clinical utility assessments involved 499 clinicians and 12 tools, indicating improved clinician performance with AI assistance and superior performance to standard clinical systems.

DISCUSSION

Interest in ML-based clinical decision-making has grown in recent years alongside increased multi-institutional collaboration. However, small sample sizes likely impacted data quality and generalizability. Persistent challenges include limited international validation across ethnicities, inconsistent data sharing, disparities in validation metrics, and insufficient calibration reporting, hindering model comparison reliability.

CONCLUSION

Successful integration of ML in oncology decision-making requires standardized data and methodologies, larger sample sizes, greater transparency, and robust validation and clinical utility assessments.

OTHER

Financed by FCT-Fundação para a Ciência e a Tecnologia (Portugal, project LA/P/0063/2020, grant 2021.09040.BD) as part of CSS's Ph.D. This work was not registered.

摘要

背景

本综述系统地梳理了癌症患者护理中经过外部验证的基于机器学习(ML)的模型,量化其性能和临床效用,并研究模型、癌症类型和临床决策之间的关系。通过综合证据,本研究确定其优势、局限性以及需要进一步研究的领域。

方法

本综述遵循乔安娜·布里格斯研究所的方法、系统评价和元分析扩展版的范围综述指南以及人群、概念和背景记忆法。在Embase、IEEE Xplore、PubMed、Scopus和Web of Science(2014年1月至2022年9月)中进行检索,目标是Q1期刊(Scimago期刊和国家排名>1)上的英文定量研究,这些研究使用ML来评估具有常见可用数据的人类癌症患者的临床结局。符合条件的模型需要进行外部验证、临床效用评估和性能指标报告。涉及遗传学、合成患者、植物或动物的研究被排除。结果以表格、图形和描述性形式呈现。

结果

从4023篇去重摘要和636篇全文综述中,56项研究(2018 - 2022年)符合纳入标准,涵盖了多种癌症类型和应用。卷积神经网络最为普遍,表现出高性能,其次是基于梯度和决策树的算法。其他算法虽然代表性不足,但也显示出前景。肺癌和消化系统癌症研究最为频繁,重点是诊断和结局预测。大多数研究是回顾性的且多机构参与,主要使用基于图像的数据,其次是基于文本和混合方法。临床效用评估涉及499名临床医生和12种工具,表明在人工智能辅助下临床医生的表现有所改善,且性能优于标准临床系统。

讨论

近年来,随着多机构合作的增加,对基于ML的临床决策的兴趣有所增长。然而,小样本量可能影响了数据质量和可推广性。持续存在的挑战包括不同种族间国际验证有限、数据共享不一致、验证指标存在差异以及校准报告不足,这阻碍了模型比较的可靠性。

结论

ML在肿瘤学决策中的成功整合需要标准化的数据和方法、更大的样本量、更高的透明度以及强有力的验证和临床效用评估。

其他

由FCT - Fundação para a Ciência e a Tecnologia(葡萄牙,项目LA/P/0063/2020,资助2021.09040.BD)资助,作为CSS博士学位的一部分。本研究未注册。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c20e/11843972/fc5604cd9f8a/12874_2025_2463_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验