Franco-Campos Felipe, Fernández-Franzón Mónica, Rodríguez-Carrasco Yelko, Ruiz María-José
Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
Toxins (Basel). 2025 Jul 2;17(7):336. doi: 10.3390/toxins17070336.
The nervous system maintains homeostasis and coordinated behavior through complex neuronal and glial cells. Traditional models, such as primary rodent neurons and human-induced pluripotent stem cell (hIPSC)-derived neurons, have advanced our understanding of neuronal function and neurotoxic damage; however, they are costly and labor-intensive. SH-SY5Y cells, an immortalized human neuroblastoma cell line, provide a more accessible alternative for studying neuronal processes and neurotoxicity. However, their limited capacity to differentiate into specific neuronal phenotypes remains a challenge. To address this limitation, differentiation protocols using neuronal factors and vitamins have been developed, primarily in two-dimensional (2D) cultures, which reduces physiological relevance. Here, we present a novel three-dimensional (3D) SH-SY5Y model incorporating 2D differentiation protocols to generate cholinergic neurons (ChAT+). This model enhances neurotoxicity studies related to pesticides and mycotoxins. Our protocol produces homogeneous spheroids differentiated into cholinergic neurons using serum restriction and specific factors, maintaining viability and circularity for up to 22 days. Differentiation was validated by immunofluorescence and Western blot by Choline acetyltransferase (ChAT) expression. This scalable and reproducible 3D model provides a valuable in vitro tool for neurotoxicological research, improving physiological relevance and enabling the study of cholinergic neuron differentiation and function.
神经系统通过复杂的神经元和神经胶质细胞维持体内平衡和协调行为。传统模型,如原代啮齿动物神经元和人诱导多能干细胞(hIPSC)衍生的神经元,增进了我们对神经元功能和神经毒性损伤的理解;然而,它们成本高昂且 labor-intensive。SH-SY5Y 细胞是一种永生化的人神经母细胞瘤细胞系,为研究神经元过程和神经毒性提供了一种更易获取的替代方案。然而,它们分化为特定神经元表型的能力有限,这仍然是一个挑战。为了解决这一限制,已经开发了使用神经元因子和维生素的分化方案,主要是在二维(2D)培养中,这降低了生理相关性。在此,我们提出一种新颖的三维(3D)SH-SY5Y 模型,结合 2D 分化方案来生成胆碱能神经元(ChAT+)。该模型增强了与农药和霉菌毒素相关的神经毒性研究。我们的方案通过血清限制和特定因子产生分化为胆碱能神经元的均匀球体,维持活力和圆形度长达 22 天。通过免疫荧光和 Western 印迹法检测胆碱乙酰转移酶(ChAT)表达来验证分化。这种可扩展且可重复的 3D 模型为神经毒理学研究提供了一种有价值的体外工具,提高了生理相关性,并能够研究胆碱能神经元的分化和功能。