Liu Yifan, Lu Fei, Hu Hui, Du Haoyang, Liu Yan, Wei Yao
School of Information Science and Engineering, Shandong University, Qingdao 266237, China.
School of Physics, Shandong University, Jinan 250100, China.
Nanomaterials (Basel). 2025 Jul 18;15(14):1116. doi: 10.3390/nano15141116.
This study explores the impact of graphene integration on lithium niobate (LiNbO, LN) ridge waveguides and directional couplers, focusing on coupling efficiency, polarization-dependent light absorption, and temperature sensitivity. Experimental and simulation results reveal that graphene loading significantly alters the effective mode refractive index and enhances waveguide coupling, enabling precise control over light transmission and power distribution. The temperature-dependent behavior of graphene-LN structures demonstrates strong thermal sensitivity, with notable changes in output power ratios between cross and through ports under varying temperatures. These findings highlight the potential of graphene-LN hybrid devices for compact, high-performance photonic circuits and temperature sensing applications. This study provides valuable insights into the design of advanced integrated photonic systems, paving the way for innovations in optical communication, sensing, and quantum technologies.
本研究探讨了石墨烯集成对铌酸锂(LiNbO₃,LN)脊形波导和定向耦合器的影响,重点关注耦合效率、偏振相关光吸收和温度敏感性。实验和模拟结果表明,石墨烯负载显著改变了有效模式折射率并增强了波导耦合,从而能够精确控制光传输和功率分配。石墨烯-LN结构的温度相关行为表现出强烈的热敏感性,在不同温度下交叉端口和直通端口之间的输出功率比有显著变化。这些发现突出了石墨烯-LN混合器件在紧凑型高性能光子电路和温度传感应用中的潜力。本研究为先进集成光子系统的设计提供了有价值的见解,为光通信、传感和量子技术的创新铺平了道路。