Xu Yuntao, Sayem Ayed Al, Fan Linran, Zou Chang-Ling, Wang Sihao, Cheng Risheng, Fu Wei, Yang Likai, Xu Mingrui, Tang Hong X
Department of Electrical Engineering, Yale University, New Haven, CT, USA.
College of Optical Sciences, The University of Arizona, Tucson, AZ, USA.
Nat Commun. 2021 Jul 22;12(1):4453. doi: 10.1038/s41467-021-24809-y.
Superconducting cavity electro-optics presents a promising route to coherently convert microwave and optical photons and distribute quantum entanglement between superconducting circuits over long-distance. Strong Pockels nonlinearity and high-performance optical cavity are the prerequisites for high conversion efficiency. Thin-film lithium niobate (TFLN) offers these desired characteristics. Despite significant recent progresses, only unidirectional conversion with efficiencies on the order of 10 has been realized. In this article, we demonstrate the bidirectional electro-optic conversion in TFLN-superconductor hybrid system, with conversion efficiency improved by more than three orders of magnitude. Our air-clad device architecture boosts the sustainable intracavity pump power at cryogenic temperatures by suppressing the prominent photorefractive effect that limits cryogenic performance of TFLN, and reaches an efficiency of 1.02% (internal efficiency of 15.2%). This work firmly establishes the TFLN-superconductor hybrid EO system as a highly competitive transduction platform for future quantum network applications.
超导腔电光技术为相干转换微波光子和光学光子以及在长距离超导电路之间分配量子纠缠提供了一条很有前景的途径。强泡克尔斯非线性和高性能光学腔是实现高转换效率的先决条件。薄膜铌酸锂(TFLN)具备这些理想特性。尽管最近取得了显著进展,但目前仅实现了效率约为10%的单向转换。在本文中,我们展示了TFLN - 超导体混合系统中的双向电光转换,转换效率提高了三个多数量级。我们的空气包覆器件架构通过抑制限制TFLN低温性能的显著光折变效应,提高了低温下可持续的腔内泵浦功率,效率达到1.02%(内部效率为15.2%)。这项工作牢固地确立了TFLN - 超导体混合电光系统作为未来量子网络应用极具竞争力转换平台的地位。