School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, China.
Hubei Yangtze Memory Laboratories, Wuhan, China.
Nat Commun. 2024 Aug 23;15(1):7275. doi: 10.1038/s41467-024-51609-x.
Constructing crossmodal in-sensor processing system based on high-performance flexible devices is of great significance for the development of wearable human-machine interfaces. A bio-inspired crossmodal in-sensor computing system can perform real-time energy-efficient processing of multimodal signals, alleviating data conversion and transmission between different modules in conventional chips. Here, we report a bio-inspired crossmodal spiking sensory neuron (CSSN) based on a flexible VO memristor, and demonstrate a crossmodal in-sensor encoding and computing system for wearable human-machine interfaces. We demonstrate excellent performance in the VO memristor including endurance (>10), uniformity (0.72% for cycle-to-cycle variations and 3.73% for device-to-device variations), speed (<30 ns), and flexibility (bendable to a curvature radius of 1 mm). A flexible hardware processing system is implemented based on the CSSN, which can directly perceive and encode pressure and temperature bimodal information into spikes, and then enables the real-time haptic-feedback for human-machine interaction. We successfully construct a crossmodal in-sensor spiking reservoir computing system via the CSSNs, which can achieve dynamic objects identification with a high accuracy of 98.1% and real-time signal feedback. This work provides a feasible approach for constructing flexible bio-inspired crossmodal in-sensor computing systems for wearable human-machine interfaces.
基于高性能柔性器件构建跨模态传感器内处理系统对于可穿戴人机接口的发展具有重要意义。受生物启发的跨模态传感器内计算系统可以实时、节能地处理多模态信号,减轻传统芯片中不同模块之间的数据转换和传输。在这里,我们报告了一种基于柔性 VO 忆阻器的受生物启发的跨模态尖峰感觉神经元 (CSSN),并展示了一种用于可穿戴人机接口的跨模态传感器内编码和计算系统。我们在 VO 忆阻器中展示了出色的性能,包括耐久性(>10)、均匀性(循环间变化为 0.72%,器件间变化为 3.73%)、速度(<30 ns)和灵活性(可弯曲至曲率半径 1 mm)。我们基于 CSSN 实现了一个灵活的硬件处理系统,该系统可以直接感知和将压力和温度双模态信息编码为尖峰,然后实现人机交互的实时触觉反馈。我们成功地通过 CSSNs 构建了跨模态传感器内尖峰储存计算系统,该系统可以实现动态对象识别,准确率高达 98.1%,并实现实时信号反馈。这项工作为构建用于可穿戴人机接口的柔性生物启发式跨模态传感器内计算系统提供了一种可行的方法。