Suppr超能文献

利用深度学习进行牛头和耳部姿态自动估计用于动物福利研究

Automated Cattle Head and Ear Pose Estimation Using Deep Learning for Animal Welfare Research.

作者信息

Kim Sueun

机构信息

Laboratory of Large Animal Clinical Medicine, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Osaka 598-8531, Japan.

出版信息

Vet Sci. 2025 Jul 13;12(7):664. doi: 10.3390/vetsci12070664.

Abstract

With the increasing importance of animal welfare, behavioral indicators such as changes in head and ear posture are widely recognized as non-invasive and field-applicable markers for evaluating the emotional state and stress levels of animals. However, traditional visual observation methods are often subjective, as assessments can vary between observers, and are unsuitable for long-term, quantitative monitoring. This study proposes an artificial intelligence (AI)-based system for the detection and pose estimation of cattle heads and ears using deep learning techniques. The system integrates Mask R-CNN for accurate object detection and FSA-Net for robust 3D pose estimation (yaw, pitch, and roll) of cattle heads and left ears. Comprehensive datasets were constructed from images of Japanese Black cattle, collected under natural conditions and annotated for both detection and pose estimation tasks. The proposed framework achieved mean average precision (mAP) values of 0.79 for head detection and 0.71 for left ear detection and mean absolute error (MAE) of approximately 8-9° for pose estimation, demonstrating reliable performance across diverse orientations. This approach enables long-term, quantitative, and objective monitoring of cattle behavior, offering significant advantages over traditional subjective stress assessment methods. The developed system holds promise for practical applications in animal welfare research and real-time farm management.

摘要

随着动物福利的重要性日益增加,诸如头部和耳朵姿势变化等行为指标被广泛认为是评估动物情绪状态和应激水平的非侵入性且适用于现场的标记。然而,传统的视觉观察方法往往具有主观性,因为不同观察者的评估可能存在差异,并且不适用于长期的定量监测。本研究提出了一种基于人工智能(AI)的系统,用于使用深度学习技术检测牛的头部和耳朵并进行姿态估计。该系统集成了Mask R-CNN用于精确的目标检测,以及FSA-Net用于对牛头和左耳进行稳健的三维姿态估计(偏航、俯仰和滚动)。综合数据集由日本黑牛的图像构建而成,这些图像是在自然条件下收集的,并针对检测和姿态估计任务进行了标注。所提出的框架在头部检测方面的平均精度均值(mAP)为0.79,左耳检测为0.71,姿态估计的平均绝对误差(MAE)约为8-9°,在不同方向上均表现出可靠的性能。这种方法能够对牛的行为进行长期、定量和客观的监测,与传统的主观应激评估方法相比具有显著优势。所开发的系统在动物福利研究和实时农场管理的实际应用中具有广阔前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46b6/12300177/5cb9d0e21726/vetsci-12-00664-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验