Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
The Salk Institute for Biological Studies, La Jolla, CA, USA.
Nat Methods. 2022 Apr;19(4):486-495. doi: 10.1038/s41592-022-01426-1. Epub 2022 Apr 4.
The desire to understand how the brain generates and patterns behavior has driven rapid methodological innovation in tools to quantify natural animal behavior. While advances in deep learning and computer vision have enabled markerless pose estimation in individual animals, extending these to multiple animals presents unique challenges for studies of social behaviors or animals in their natural environments. Here we present Social LEAP Estimates Animal Poses (SLEAP), a machine learning system for multi-animal pose tracking. This system enables versatile workflows for data labeling, model training and inference on previously unseen data. SLEAP features an accessible graphical user interface, a standardized data model, a reproducible configuration system, over 30 model architectures, two approaches to part grouping and two approaches to identity tracking. We applied SLEAP to seven datasets across flies, bees, mice and gerbils to systematically evaluate each approach and architecture, and we compare it with other existing approaches. SLEAP achieves greater accuracy and speeds of more than 800 frames per second, with latencies of less than 3.5 ms at full 1,024 × 1,024 image resolution. This makes SLEAP usable for real-time applications, which we demonstrate by controlling the behavior of one animal on the basis of the tracking and detection of social interactions with another animal.
了解大脑如何产生和塑造行为的愿望推动了工具的快速方法创新,以量化自然动物行为。虽然深度学习和计算机视觉的进步使个体动物的无标记姿势估计成为可能,但将这些扩展到多个动物会给社交行为或自然环境中的动物研究带来独特的挑战。在这里,我们提出了 Social LEAP Estimates Animal Poses(SLEAP),这是一个用于多动物姿势跟踪的机器学习系统。该系统为以前看不见的数据的标记、模型训练和推理提供了灵活的工作流程。SLEAP 具有易于访问的图形用户界面、标准化的数据模型、可重复的配置系统、超过 30 种模型架构、两种分组方式和两种身份跟踪方式。我们将 SLEAP 应用于七个数据集,包括苍蝇、蜜蜂、老鼠和沙鼠,以系统地评估每种方法和架构,并将其与其他现有方法进行比较。SLEAP 实现了更高的准确性和超过 800 帧/秒的速度,在全 1024×1024 图像分辨率下的延迟小于 3.5ms。这使得 SLEAP 可用于实时应用,我们通过根据与另一只动物的跟踪和检测来控制一只动物的行为来演示这一点。