Suppr超能文献

探讨隐私担忧、人工智能素养和感知到的健康污名对医疗保健中人工智能聊天机器人使用的影响:一种降低不确定性的方法。

Exploring the influence of privacy concerns, AI literacy, and perceived health stigma on AI chatbot use in healthcare: An uncertainty reduction approach.

作者信息

Liu Zikun, Zou Wenxue, Lin Cong

机构信息

School of Journalism and Communication, Wuhan University, China.

School of Journalism and Communication, Tsinghua University, China.

出版信息

Patient Educ Couns. 2025 Jul 22;140:109271. doi: 10.1016/j.pec.2025.109271.

Abstract

OBJECTIVE

Guided by Uncertainty Reduction Theory, this study aims to explore the influence of AI privacy concerns, AI literacy, and perceived health stigma on the preference for AI chatbots in Chinese healthcare contexts.

METHOD

We analyzed survey data from 1487 participants, employing frequency analyses to generate descriptive statistics and regression modeling to examine the relationships among key variables.

RESULTS

The findings indicate that AI chatbots are most highly valued for their roles in health information dissemination and lifestyle guidance. Privacy concerns negatively affect perceptions of AI as a substitute for doctors, particularly regarding sensitive health issues. However, AI literacy mitigates these concerns across all functional domains. Additionally, perceived health stigma enhances the acceptance of AI chatbots as substitutes for doctors in sensitive areas and intensifies the adverse impact of privacy concerns on AI's role in health information, decision-making, and lifestyle guidance.

CONCLUSION

The current study yields valuable insights into the role of AI chatbots in healthcare contexts, particularly in shaping users' intentions to disclose personal information. It also advances the theoretical scope of Uncertainty Reduction Theory by extending its application to human-AI interactions.

PRACTICAL IMPLICATIONS

The findings underscore the need for healthcare providers, policymakers, and AI developers to prioritize privacy safeguards, promote AI literacy, and actively combat stigma. Such efforts are essential to fostering trust and encouraging meaningful patient engagement with AI-driven tools, especially in addressing sensitive health concerns.

摘要

目的

本研究以不确定性降低理论为指导,旨在探讨在中国医疗环境中,对人工智能隐私问题的担忧、人工智能素养以及感知到的健康污名对人工智能聊天机器人偏好的影响。

方法

我们分析了1487名参与者的调查数据,采用频率分析生成描述性统计数据,并使用回归模型来检验关键变量之间的关系。

结果

研究结果表明,人工智能聊天机器人在健康信息传播和生活方式指导方面的作用最受重视。对隐私问题的担忧会对将人工智能视为医生替代品的看法产生负面影响,尤其是在涉及敏感健康问题时。然而,人工智能素养在所有功能领域都能减轻这些担忧。此外,感知到的健康污名会增强在敏感领域将人工智能聊天机器人视为医生替代品的接受度,并加剧隐私问题对人工智能在健康信息、决策和生活方式指导方面作用的不利影响。

结论

本研究为人工智能聊天机器人在医疗环境中的作用提供了有价值的见解,特别是在塑造用户披露个人信息的意图方面。它还通过将不确定性降低理论的应用扩展到人机交互领域,拓展了该理论的理论范围。

实际意义

研究结果强调医疗服务提供者、政策制定者和人工智能开发者需要优先保障隐私、提高人工智能素养并积极消除污名。这些努力对于建立信任以及鼓励患者积极使用人工智能驱动的工具,特别是在解决敏感健康问题方面至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验