Huo Wenting, Lin Xiaohua, Gao Mengyu, Shi Xiang, Li Hongbin, Zhuo Lu
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
College of Agriculture, Shihezi University, Shihezi, 832000, China.
Plant Methods. 2025 Jul 26;21(1):103. doi: 10.1186/s13007-025-01419-z.
Mitochondria are central to plant growth, development, and stress resilience. Despite their importance, mitochondrial research in desiccation-tolerant mosses remains underexplored. To unravel the stress resistance mechanisms of the extremotolerant desert moss, establishing a method to isolate highly active and pure mitochondria is critical. This study pioneered the use of low-temperature immersion combined with differential centrifugation and discontinuous percoll density gradient centrifugation to isolate mitochondria from Syntrichia caninervis, a model desiccation-tolerant moss. The purity, structural integrity, and functional activity of the isolated mitochondria were systematically evaluated using western blot analysis, Janus Green B staining, JC-1 membrane potential assays, and electron transport chain (ETC) complex activity measurements.
From 50 g of S. caninervis tissue, approximately 56.7 mg of mitochondria were isolated with high purity, effectively removing non-mitochondrial contaminants (e.g., chloroplasts and cytoplasmic debris). Functional assays and membrane potential analysis confirmed no significant damage to mitochondrial activity or structural integrity during the purification process. Notably, room temperature storage (25 °C) induced rapid functional decay, whereas cryogenic storage at - 20 °C maintained ≥ 70% mitochondrial viability over 10 days, sufficient for downstream applications including proteomic profiling and bioenergetic studies.
The optimized mitochondrial isolation protocol presented here is both time efficient and highly reproducible, yielding mitochondria of exceptional purity suitable for mechanistic studies in desiccation-tolerant mosses. The isolated mitochondria exhibit robust functional activity and structural integrity, providing a reliable platform for investigating stress resistance mechanisms in S. caninervis and other extremophytic species. By establishing a standardized workflow for mitochondrial isolation in desiccation-tolerant plants, this method addresses a critical technical gap and paves the way for advanced investigations into mitochondrial biology under extreme environmental conditions.
线粒体对于植物的生长、发育和抗逆性至关重要。尽管其重要性,但耐旱苔藓中线粒体的研究仍未得到充分探索。为了解析极端耐旱沙漠苔藓的抗逆机制,建立一种分离高活性和纯净线粒体的方法至关重要。本研究率先采用低温浸泡结合差速离心和不连续 Percoll 密度梯度离心法,从模式耐旱苔藓毛尖紫萼藓中分离线粒体。通过蛋白质免疫印迹分析、詹纳斯绿 B 染色、JC-1 膜电位测定和电子传递链(ETC)复合体活性测量,系统评估了分离得到的线粒体的纯度、结构完整性和功能活性。
从 50 克毛尖紫萼藓组织中,分离出约 56.7 毫克高纯度的线粒体,有效去除了非线粒体污染物(如叶绿体和细胞质碎片)。功能测定和膜电位分析证实,在纯化过程中线粒体活性和结构完整性未受到显著损害。值得注意的是,室温储存(25°C)会导致功能迅速衰退,而在-20°C 低温储存 10 天内线粒体活力维持在≥70%,足以满足包括蛋白质组分析和生物能量学研究在内的下游应用。
本文提出的优化线粒体分离方案既高效又具有高度可重复性,产生的线粒体纯度极高,适用于耐旱苔藓的机制研究。分离得到的线粒体表现出强大的功能活性和结构完整性,为研究毛尖紫萼藓和其他极端植物物种的抗逆机制提供了可靠平台。通过建立耐旱植物线粒体分离的标准化工作流程,该方法填补了关键技术空白,为极端环境条件下线粒体生物学的深入研究铺平了道路。