Borah Pranjit, Roy Saptarshi, Ahmaruzzaman Md
Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India.
Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India.
Adv Colloid Interface Sci. 2025 Jul 22;344:103613. doi: 10.1016/j.cis.2025.103613.
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have emerged as transformative materials that consistently captivated scientists across various disciplines, renowned for their exceptional attributes such as large specific surface area, structural tunability, high crystallinity, and precisely-defined accessible porous architectures. Recent advancements in synthetic strategies have facilitated the engineering of MOF/COF hybrid constructs by integrating these frameworks, yielding a superior class of porous materials with synergistic characteristics. This review presents a comprehensive overview of state-of-the-art design for diverse MOF-COF heterostructures and hybrid variants alongside their innovative fabrication methodologies. It systematically classifies the diverse MOF/COF hybrid architectures, thereby unifying all established variants within a unified conceptual framework. Distinct from prior studies, this article combines the various fabrication approaches with a comparative assessment of their structural configurations, key attributes, synthetic feasibility, inherent advantages and limitations, and application prospects. Addressing a critical gap in the literature, it also comprehensively examines the characterization techniques employed, encompassing structural, morphological, thermal, and elemental analyses, to elucidate a detailed understanding of this exciting porous family. Considerable efforts have been dedicated to unravelling the interfacial chemistries that enable the synergistic integration of the complementary attributes of MOFs and COFs. Moreover, this study systematically highlights the pioneering advancements spanning catalysis-such as molecular catalysis, photocatalysis, and energy-transfer photocatalysis-as well as broader areas, including chemical sensing, gas adsorption and separation, biosensing, tribology, and biomedical technologies. Finally, the existing challenges and future directions for MOF/COF composites are sketched, emphasizing the need to enhance chemical stability, interfacial electronic coupling, and structural versatility through innovative linkages, advanced heterostructures, and tailored architectures. The integration of machine learning and data-driven approaches will expediate the rational design of hybrids tailored for catalysis, energy storage, sensing, and separation, while leveraging synergistic interactions and emerging synthetic paradigms will unlock multifunctional platforms for a broad spectrum of high-impact cross-disciplinary applications.
金属有机框架材料(MOFs)和共价有机框架材料(COFs)已成为变革性材料,一直吸引着各个学科的科学家,它们以其大比表面积、结构可调节性、高结晶度和精确界定的可及多孔结构等卓越特性而闻名。合成策略的最新进展通过整合这些框架促进了MOF/COF杂化结构的工程设计,产生了一类具有协同特性的优质多孔材料。本文综述全面概述了各种MOF-COF异质结构和杂化变体的最新设计以及它们的创新制备方法。它系统地对各种MOF/COF杂化结构进行了分类,从而将所有已确立的变体统一在一个统一的概念框架内。与先前的研究不同,本文将各种制备方法与对其结构构型、关键属性、合成可行性、固有优势和局限性以及应用前景的比较评估相结合。针对文献中的一个关键空白,它还全面研究了所采用的表征技术,包括结构、形态、热和元素分析,以阐明对这个令人兴奋的多孔材料家族的详细理解。人们已经付出了相当大的努力来揭示能够实现MOFs和COFs互补属性协同整合的界面化学。此外,本研究系统地突出了开创性进展,涵盖催化领域,如分子催化、光催化和能量转移光催化,以及更广泛的领域,包括化学传感、气体吸附与分离、生物传感、摩擦学和生物医学技术。最后,勾勒了MOF/COF复合材料目前存在的挑战和未来方向,强调需要通过创新连接、先进异质结构和定制结构来提高化学稳定性、界面电子耦合和结构多功能性。机器学习和数据驱动方法的整合将加速为催化、能量存储、传感和分离量身定制的杂化材料的合理设计,同时利用协同相互作用和新兴合成范式将为广泛的高影响力跨学科应用解锁多功能平台。
Adv Colloid Interface Sci. 2025-7-1
Acc Chem Res. 2025-5-15
Acc Chem Res. 2025-7-1
Chem Rev. 2025-7-9
Open Res Eur. 2025-5-6
ACS Appl Mater Interfaces. 2025-9-3