文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种具有侧向起伏脊柱的仿生可调节姿态四足机器人,适用于地形动力学具有挑战性的环境。

A bio-inspired adjustable posture quadruped robot with laterally undulating spine for terradynamically challenging environments.

作者信息

Dutta Saurav Kumar, Ozkan-Aydin Yasemin

机构信息

Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.

Mechanical Engineering, National Institute of Technology, NIT-Trichy), Tiruchirappalli, 620015, Tamil Nadu, India.

出版信息

Sci Rep. 2025 Jul 25;15(1):27143. doi: 10.1038/s41598-025-07623-0.


DOI:10.1038/s41598-025-07623-0
PMID:40715240
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12297303/
Abstract

Morphological adaptation is vital for biological organisms navigating changing environments. While robots have sought to emulate this adaptability with adjustable body structures, practical robotic applications remain constrained by the complexity of integrating advanced materials, sophisticated control systems, and novel design approaches. This paper introduces a bioinspired quadruped robot featuring both a laterally undulating spine and posture-changing mechanism, specifically designed for adaptation in complex terradynamic environments. The robot utilizes a symmetrical parallelogram mechanism to precisely control its height and width, enabling it to navigate diverse terrains adeptly, avoid collisions, pass through narrow channels, and negotiate obstacles. Furthermore, the robot achieves stability through lateral undulation, which actively counteracts instability arising from posture changes. This ensures the center of gravity remains within its support triangle for the majority of the locomotion cycle, thereby obviating the reliance on intricate posture-stabilizing sensors or learning algorithms. The experimental results demonstrate the robot's capability to traverse both flat and significantly inclined surfaces (10° uphill and downhill), as well as successfully navigate confined tunnels, down to a narrow width. We observed notable variations in locomotion speed based on posture: certain configurations exhibited speeds that were up to 30% faster than others on surfaces with the least roughness, with similar trends holding for intermediate and maximum roughness. Furthermore, the robot demonstrates energy efficiency; while zero-degree posture showed a modest increase in average power consumption (around 18%) compared to others, the overall energy expenditure across various gaits remained consistently low. This work contributes to the development of versatile and autonomous robotic systems capable of operating in unstructured and unpredictable real-world scenarios, bridging the gap between theoretical adaptability and practical deployment in fields ranging from exploration to disaster response.

摘要

形态适应对于生物有机体在不断变化的环境中生存至关重要。虽然机器人试图通过可调节的身体结构来模拟这种适应性,但实际的机器人应用仍然受到集成先进材料、复杂控制系统和新颖设计方法的复杂性的限制。本文介绍了一种受生物启发的四足机器人,它具有横向波动的脊柱和姿势改变机制,专门设计用于在复杂的地形动力学环境中进行适应。该机器人利用对称平行四边形机构精确控制其高度和宽度,使其能够熟练地在各种地形中导航,避免碰撞,通过狭窄通道并跨越障碍物。此外,机器人通过横向波动实现稳定性,这有效地抵消了姿势变化引起的不稳定性。这确保了在大多数运动周期中重心保持在其支撑三角形内,从而无需依赖复杂的姿势稳定传感器或学习算法。实验结果表明,该机器人能够穿越平坦和显著倾斜的表面(上坡和下坡10°),以及成功地在狭窄的隧道中导航,直至狭窄宽度。我们观察到基于姿势的运动速度有显著差异:在粗糙度最小的表面上,某些配置的速度比其他配置快高达30%,在中等粗糙度和最大粗糙度的表面上也有类似趋势。此外,该机器人展示了能源效率;虽然零度姿势与其他姿势相比平均功耗略有增加(约18%),但各种步态的总体能量消耗始终保持较低。这项工作有助于开发能够在非结构化和不可预测的现实世界场景中运行的多功能自主机器人系统,弥合理论适应性与从探索到灾难响应等领域的实际部署之间的差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/eebbd16b351e/41598_2025_7623_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/546240682f37/41598_2025_7623_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/abd15d27ae0e/41598_2025_7623_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/bf6d8de7404f/41598_2025_7623_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/9bbaa99a7c45/41598_2025_7623_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/1a70883e75ba/41598_2025_7623_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/080dfe693bb8/41598_2025_7623_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/d5928819a7fa/41598_2025_7623_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/172dd82773d9/41598_2025_7623_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/810ad6f8ca27/41598_2025_7623_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/eebbd16b351e/41598_2025_7623_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/546240682f37/41598_2025_7623_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/abd15d27ae0e/41598_2025_7623_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/bf6d8de7404f/41598_2025_7623_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/9bbaa99a7c45/41598_2025_7623_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/1a70883e75ba/41598_2025_7623_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/080dfe693bb8/41598_2025_7623_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/d5928819a7fa/41598_2025_7623_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/172dd82773d9/41598_2025_7623_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/810ad6f8ca27/41598_2025_7623_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b11/12297303/eebbd16b351e/41598_2025_7623_Fig10_HTML.jpg

相似文献

[1]
A bio-inspired adjustable posture quadruped robot with laterally undulating spine for terradynamically challenging environments.

Sci Rep. 2025-7-25

[2]
Bioinspired Soft Spine Enables Small-Scale Robotic Rat to Conquer Challenging Environments.

Soft Robot. 2024-2

[3]
A Biomimetic Adhesive Disc for Robotic Adhesion Sliding Inspired by the Net-Winged Midge Larva.

Soft Robot. 2025-2

[4]
Optimal design of a wheelchair-mounted robotic arm for activities of daily living.

Disabil Rehabil Assist Technol. 2025-7

[5]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[6]
Variation within and between digital pathology and light microscopy for the diagnosis of histopathology slides: blinded crossover comparison study.

Health Technol Assess. 2025-7

[7]
Short-Term Memory Impairment

2025-1

[8]
Accreditation through the eyes of nurse managers: an infinite staircase or a phenomenon that evaporates like water.

J Health Organ Manag. 2025-6-30

[9]
CPG-Based Control of an Octopod Biomimetic Machine Lobster for Mining Applications: Design and Implementation in Challenging Underground Environments.

Sensors (Basel). 2025-7-11

[10]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

本文引用的文献

[1]
A Gecko-Inspired Robot with a Flexible Spine Driven by Shape Memory Alloy Springs.

Soft Robot. 2023-8

[2]
A general locomotion control framework for multi-legged locomotors.

Bioinspir Biomim. 2022-6-16

[3]
Polymer-Based Additive Manufacturing: Process Optimisation for Low-Cost Industrial Robotics Manufacture.

Polymers (Basel). 2021-8-21

[4]
Self-reconfigurable multilegged robot swarms collectively accomplish challenging terradynamic tasks.

Sci Robot. 2021-7-28

[5]
Variable stiffness morphing limb for amphibious legged robots inspired by chelonian environmental adaptations.

Bioinspir Biomim. 2020-2-14

[6]
Lateral undulation of the flexible spine of sprawling posture vertebrates.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2018-7-4

[7]
DINOSAUR PHYSIOLOGY AND THE ORIGIN OF MAMMALS.

Evolution. 1971-12

[8]
Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot.

Bioinspir Biomim. 2015-5-13

[9]
Pigeons trade efficiency for stability in response to level of challenge during confined flight.

Proc Natl Acad Sci U S A. 2015-3-17

[10]
Soft robotics: a bioinspired evolution in robotics.

Trends Biotechnol. 2013-4-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索