Suppr超能文献

一种用于多足移动机器人的通用运动控制框架。

A general locomotion control framework for multi-legged locomotors.

机构信息

Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, United States of America.

University of Notre Dame, Notre Dame, IN 46556, United States of America.

出版信息

Bioinspir Biomim. 2022 Jun 16;17(4). doi: 10.1088/1748-3190/ac6e1b.

Abstract

Serially connected robots are promising candidates for performing tasks in confined spaces such as search and rescue in large-scale disasters. Such robots are typically limbless, and we hypothesize that the addition of limbs could improve mobility. However, a challenge in designing and controlling such devices lies in the coordination of high-dimensional redundant modules in a way that improves mobility. Here we develop a general framework to discover templates to control serially connected multi-legged robots. Specifically, we combine two approaches to build a general shape control scheme which can provide baseline patterns of self-deformation ('gaits') for effective locomotion in diverse robot morphologies. First, we take inspiration from a dimensionality reduction and a biological gait classification scheme to generate cyclic patterns of body deformation and foot lifting/lowering, which facilitate the generation of arbitrary substrate contact patterns. Second, we extend geometric mechanics, which was originally introduced to study swimming at low Reynolds numbers, to frictional environments, allowing the identification of optimal body-leg coordination in this common terradynamic regime. Our scheme allows the development of effective gaits on flat terrain with diverse numbers of limbs (4, 6, 16, and even 0 limbs) and backbone actuation. By properly coordinating the body undulation and leg placement, our framework combines the advantages of both limbless robots (modularity and narrow profile) and legged robots (mobility). Our framework can provide general control schemes for the rapid deployment of general multi-legged robots, paving the way toward machines that can traverse complex environments. In addition, we show that our framework can also offer insights into body-leg coordination in living systems, such as salamanders and centipedes, from a biomechanical perspective.

摘要

串联机器人是在诸如大规模灾难中的搜索和救援等受限空间中执行任务的有前途的候选者。这些机器人通常没有肢体,我们假设添加肢体可以提高机动性。然而,设计和控制此类设备的挑战在于以提高机动性的方式协调高维冗余模块。在这里,我们开发了一个通用框架来发现控制串联多足机器人的模板。具体来说,我们结合了两种方法来构建通用的形状控制方案,该方案可以为各种机器人形态的有效运动提供自我变形的基本模式(“步态”)。首先,我们从降维和生物步态分类方案中获得灵感,生成身体变形和脚部抬起/放下的周期性模式,这有助于生成任意的基底接触模式。其次,我们扩展了几何力学,该力学最初是为研究低雷诺数下的游泳而引入的,用于摩擦环境,从而可以在这种常见的地形动力学中识别最佳的身体-腿部协调。我们的方案允许在具有不同数量的肢体(4、6、16,甚至 0 个肢体)和骨干致动的平坦地形上开发有效的步态。通过正确协调身体波动和腿部放置,我们的框架结合了无肢体机器人(模块化和窄轮廓)和有腿机器人(机动性)的优势。我们的框架可以为通用多足机器人的快速部署提供通用的控制方案,为能够穿越复杂环境的机器铺平道路。此外,我们还表明,从生物力学的角度来看,我们的框架还可以为蝾螈和蜈蚣等活体系统中的身体-腿部协调提供见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验